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Investigating Exact Density-Functional Theory of a Model Semiconductor
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Using the diffusion quantum Monte Carlo method, we calculate the ground-state density and energy,
and the quasiparticle band gap, of a model semiconductor. The exchange-correlation potential of
density-functional theory (DFT), V,.(r), is obtained using optimization techniques. From this we calcu-
late the DFT functionals E,. and T, and the DFT band gap for various external potentials and compare
the results with the local-density approximation (LDA). Whereas energies are found to be very accurate
in the LDA, and the density reasonably good, we find large differences in the shape of V.(r).

PACS numbers: 71.10.4+x, 71.45.Gm

In the Kohn-Sham formulation of density-functional
theory (DFT) [1,2], the main computational tool for in-
vestigating ground-state properties of solids, the full in-
teracting Schrddinger equation is replaced by a fictitious
system of noninteracting electrons moving in an effective
potential V.(r), reproducing the true ground-state densi-
ty n(r). These so-called Kohn-Sham (KS) equations in-
volve a universal functional, the exchange-correlation en-
ergy ExInl, and its functional derivative V,.(r), which
are not known exactly. Instead, the local-density approx-
imation (LDA) is generally used, in which the contribu-
tion to E4. from cach volume element is taken to be the
same as that of a homogeneous electron gas. Despite its
crudeness, the LDA has been remarkably successful, al-
though binding energies of molecules and solids are typi-
cally overestimated [31. Also, the band gap of semicon-
ductors is much too small, for example, by 50% for Si [4]
and 100% for Ge [5]. It has been shown [6-8] that the
band gap EST, even in exact DFT, differs from the true
band gap E,; by an amount A, which is the discontinuity
in V.(r) on addition of an electron, reflecting the impor-
tance of nonanalyticities in the DFT functionals. In this
paper we investigate aspects of the functionals of exact
DFT (as estimated using our Monte Carlo calculations)
and compare them with the LDA.

Our model system is a semiconducting wire with a
strong lateral potential v, (r )= % a*3 confining the
electrons to a line. We take « sufficiently large that ex-
cited one-particle states in the lateral direction are
suppressed, which leads to an effective one-dimensional
Schrodinger equation with an electron-electron interac-
tion of ve..(x) =(n/2) Paexp(EDerfc(€), where E=ax/
V2. (A similar system was used in Refs. [6], [9], and
[101.) The external potential in the x direction is taken
to be Vexu(x) =acos(Qx), with the reciprocal-lattice con-
stant Q=2x/5 a.u.”'. We choose @ =20Q and restrict
ourselves to systems with one valence band, i.e., with two
electrons per primitive cell of length 5 a.u. We simulate
systems of V=8 and 12 electrons (with very similar re-
sults) in a supercell with periodic boundary conditions for
the many-body wave function. In order to avoid “sur-
face™ effects, this supercell is repeated 1000 times and the

interaction with the images in the other supercells is tak-
en into account in the electron-electron interaction. The
values taken for a are 0.1, 0.15, 0.25, and 1.0 hartree,
taking us from a near-homogeneous semiconducting wire
to effectively isolated subsystems.

Our method is based on the calculation of the ground-
state energy and electron density of the interacting sys-
tem using the diffusion quantum Monte Carlo (DQMC)
method in its fixed-node approximation, which has been
found previously to be very accurate [11,12]. In this
method the evaluation of integrals involving the ground-
state many-body wave function is reduced to the sam-
pling of a population of random walkers in Hilbert space.
The density is approximated as n{x)=2n,(x) —nr(x),
where ny is sampled from f=woys and nr from w#, in
which yp is the many-body ground state and wr a trial
wave function (both of which are real). Since the error
in the density is then proportional to [yo—wr]? we
found it necessary to go beyond a simple Slater deter-
minant for y7 by using a Jastrow wave function: wr(R)
=D(R)exp{— X u(x;;)}, where D(R) is the Slater deter-
minant of self-consistent LDA wave functions obtained as
the first step, and u(x) is a Jastrow pseudopotential
whose amplitude is determined variationally [12,13]. We
found that the energy, density, and DFT effective poten-
tial calculated directly from our optimized trial wave
function were very close to our final DQMUC results. This
gives us confidence in the accuracy of our calculations
and leads us to believe that the error involved is not sub-
stantially larger than the DQMC noise (indicated in Fig.
1).

In inhomogeneous systems the Jastrow factor has
sometimes been modified by the addition of a one-body
term [14] which has the effect of constraining the density.
However, we found that such a term failed to reduce the
total energy in our systems when the density was con-
strained to be similar to the LDA density, presumably
reflecting the error in the LDA density.

The effective potential V.g(x) is then calculated. Stan-
dard numerical optimization techniques are used to deter-
mine the potential which, when occupied with nonin-
teracting electrons, reproduces the density n(x). We use
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FIG. 1. Top: The exchange-correlation potential V,.(x) for
N =38 electrons and @ =0.15 hartree. The exact V. lies within
the range of the family of dotted curves, indicating the effect of
the Monte Carlo noise in the density. The LDA and non-self-
consistent LDA potentials are shown for comparison. Bottom:
The DFT (calculated using the diffusion quantum Monte Carlo
method) and LDA densities n(x) together with the trial (varia-
tional quantum Monte Carlo method) density nr(x). A repre-
sentation of the Monte Carlo noise in n(x) (less than %)
would be almost invisible on the graph.

the first twenty Fourier components of V.y as parameters,
and an essentially exact fit of #(x) is possible. This pro-
cedure only determines V r(x) within an additive con-
stant, which is adjusted in such a way that the highest oc-
cupied KS eigenvalue is equal to the ionization potential
calculated directly in DQMC, a property of exact DFT
proved earlier [15]. V,.(x) is obtained by subtracting
Veu(x) and the Hartree potential. Once V,.(x) is deter-
mined, it is possible to decompose the DQMC total ener-
gy into its DFT_components: T, (kinetic energy of the

noninteracting electrons), E. (electrostatic energy in

Vext), Ey (Hartree energy), and the remainder Ej
(exchange-correlation energy). Additionally, we obtain
the DFT band gap EPFT from Ven, and the true (quasi-
particle) band gap E, by calculating the ground-state en-
ergy upon addition and subtraction of one electron using
DQMC: E, =(En+1—En)—{(Enx—En—1). This allows
us to determine A, the discontinuity in V.. We compare
our results (denoted DFT) with the self-consistent LDA
(denoted LDA), and also with the non-self-consistent
LDA (NSCLDA) in which the DQMC ground-state den-
sity is used to determine E; and V. in the LDA. The
LDA exchange-correlation potential used throughout is
the Ceperley-Alder LDA [16]:

ViPA(x) "’f VIPA( N g (r )| 2d %,

640

where y, (1) is the lateral part of the wave function and
vV LPA(n) is the Ceperley-Alder LDA potential.

The most striking feature of ¥ 2T is its large difference
in shape compared to the LDA result, despite the fact
that the density is quite well represented in the LDA (see
Fig. 1). ViPA(x) also lies significantly above V2FT(x)
(Fig. 1). The same was found in all our calculatlons [13]
and agrees with previous results for small atoms [17].

VOFT has a similar appearance to V25T, whereas V5PA is
rather flat. The density in Fig. 1 has a flat region in the
center of the unit cell which coincides with a considerable
rise in ¥ 2FT in the same region. Both are absent in the
LDA. This illustrates the constraint resulting from local-
ity in the LDA, because a local formulation of Ex.[n] will
certainly not be able to reproduce the complex shape of
Vi(x). In fact, the results suggest that no local or near-
local approximation for ¥,. could yield the correct densi-
ty; for example, no gradient expansion could be expected
to reproduce the rapid variation of V,.(x) in the region
where the density is almost flat. Using the exact density
in NSCLDA leads to other problems. For the system
shown in Fig. 1, VYSCPA is not only flat, but also its
maxima lie roughly where V3T has its minima. This ap-
pears for small @ and leads to a qualitatively wrong KS
band structure.

In Ref. [18] an exchange-correlation potential was ob-
tained for silicon by inserting a self-energy operator ob-
tained from many-body perturbation theory into an exact
expression for V,. In that case the potential determined
was rather close to V'5PA, in contrast to the present sys-
tem. We interpret the difference as arising from two
sources. First, our semiconducting wire contains a rapid
variation in density perpendicular to the wire, which
takes it further than silicon from the homogeneous limit
in which the LDA is exactly correct. Second, all occu-
pied Kohn-Sham eigenstates in our semiconducting wire
have relatively long wavelengths along the wire, so that
the wave functions are somewhat insensitive to the varia-
tions in V¢ on the length scale of 1 a.u. shown in Fig. 1,
and it is necessary for the variations to be large to obtain
a smaller change in the density. In silicon, the presence
of short-wavelength components in the occupied Kohn-
Sham wave functions means that a small change in po-
tential is required to change the LDA density to the exact
form.

" In contrast to the exchange-correlation potential, the
LDA yields a reasonably accurate density (average error
around 10%) and very accurate results for the total ener-
gy (error typically 0.4%) and its components (typical er-
ror in T, is 6%, but only 0.004 hartree; in Ey, 0.3%; in
Exe, 1% to 2%; full results to be published [131): See
Table I. This astonishing accuracy underlines how
powerful a tool the LDA is for ground-state energy calcu-
lations. However, we find that for ¢ =1 hartree, where
the primitive cells represent effectively isolated two-
electron subsystems, the LDA slightly overestimates the
total energy by 0.3 eV per electron, whereas for the
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TABLE 1. The total energy and its components, in hartrees
per electron, in DFT and in the LDA, for the case of N =8 elec-
trons. Results are shown for the two external potentials a
=0.15 and 1.0 hartree. The error from the Monte Carlo noise
is generally betow 10 % hartree. (I hartree=27.21 eV.)

a (hartree) Eot T Eu E ext Exe
0.15 DFT 3.684 0.077 4.203 —0.024 -0.572
LDA 3.670 0.074 4.198 —0.021 —0.581
1.0 DFT 3.358 0.170 4418 -—0.561 —0.669
LDA 3.369 0.153 4.394 —0.531 —0.647

near-homogeneous case of a =0.15 hartree it gives an un-
derestimate of 0.4 eV (see Table 1), with a smooth varia-
tion for intermediate values of a. If we regard the isolat-
ed subsystems as ‘““atoms,” this would correspond to a
cohesive energy too high by 0.7 eV per electron in the
LDA, which is roughly the amount that has been ob-
served in molecules and solids [3]. It is remarkable that
the error in the LDA total energy is not restricted to £
itself, especially for large a. For example, the LDA al-
ways underestimates the charge inhomogeneity, which re-
sults in values for Ty and Ey which are too small, and for
E¢x which are too large. For a=1 hartree, the LDA
exchange-correlation energy is too high by 0.02 hartree or
3%, which is of the same order as the relative error found
by Almbladh and Pedroza [17] for two-electron atoms.

In examining the band gaps it is necessary to extrapo-

late to infinite systems. We find a very weak N depen-
dence of the DFT band gap EPXFT which is similar to that
of EgLDA, allowing a reliable finite-size scaling based on
the LDA result. In contrast, the /V dependence of E, is
very strong, but nearly fully accommodated by using a
simple electrostatic model [13]. The results, shown in
Fig. 2, reveal that EP¥T is larger than ELPA, but only
about a third of E,; in fact, approximately 85% of the
LDA band-gap error is still present in exact DFT (the
discontinuity A in V. on addition of an electron). This
agrees with predictions made for Si (over 80%) from
Green's-function many-body calculations [18] and also in
a two-plane-wave model [6,9]. These results indicate
strongly that the main source of the LDA’s failure to pre-
dict the correct band gap is in fact inherent in exact
DFT, emphasizing that one should be cautious when at-
taching any physical meaning to the eigenvalue spectrum
of the KS equations, and showing the role of nonanaly-
ticities in E .[n].

In conclusion, diffusion quantum Monte Carlo calcula-
tions have allowed us to investigate the components of the
DFT energy functional, and their functional derivatives,
for systems varying from effectively isolated “atoms™ to a
small-band-gap semiconductor. The small error in the
functional E, in the LDA is in striking contrast to the
error in its functional derivative V., while illuminating
the known tendency of the LDA to exaggerate cohesive
energies. The large discontinuity A accounts for most of
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FIG. 2. The DFT band gap EQYT and the LDA band gap
EgP vs the true band gap Ey, obtained from finite-size scaling.
The dashed line corresponds to EPYT =E,; the shaded lines are

linear extrapolations. The estimated error bars from finite-size

scaling are shown.

the LDA band-gap error.
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