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Density-Functional Theory of Polar Insulators
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We examine the density-functional theory of macroscopic insulators, obtained in the large-cluster
limit or under periodic boundary conditions. Hpolar crystals, we find that the two procedures are not
equivalent. In a large-cluster case, the exact exchange-correlation potential acquires a homogeneous
“electric field” which is absent from the usual local approximations, and the Kohn-Sham electronic
system becomes metallic. With periodic boundary conditions, such a field is forbidden, and the
polarization deduced from Kohn-Sham wave functions is incorrect even if the exact functional is used.
[S0031-9007(96)02156-4]
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Although the density-functional theory (DFT) intro- flawed. We will exhibit our results for a one-dimensional
duced by Hohenberg, Kohn, and Sham [1,2] has bemodel semiconductor.
come the standard method for first-principles calculations The correct definition of a macroscopic crystal is
of the ground-state properties of solids, to our knowl-clearly as the limit of a finite crystal of increasing size.
edge [3], the implications of applying DFT to infinite, Figure 1 shows schematically the total electrostatic po-
insulating, crystals have not been fully appreciated. Irtential Voo = V., + Vv + V,pp1 in such a finite crystal,
part, this reflects the fact that the key theorems of DFTwhereV, is the electrostatic potential due to the ground-
[1,2] were proved for arbitrarily large, but not infinite, state electron density/y is the potential due to the nu-
systems. In the present Letter, we show that the exelei, and V,,, is an applied potential, created by an
act DFT treatment opolar crystals (a) with the usual external short-circuited capacitor, that maintains equality
Born—von Karman (BvK) boundary conditions, or (b) of the electrostatic potential on the two sides [8]. The
from the macroscopic limit of large clusters, will gener-sumV,,, = Vy + V,pp1 is referred to as the external po-
ally give different macroscopic polarizations. Only (b) is tential. The total electrostatic potential in the bulk region
correct. is periodic and, crucially for a nonzero polarization, non-

Investigating theresponseof periodic insulators to a centrosymmetric. The potential just outside the surface is
homogeneous electric field, we recently revealed [4] thdixed by the electrostatic potential of the capacitor plates.
polarization dependence of the exchange-correlation erfhe corresponding ground-state electron density is also
ergy, and its consequences on the dielectric responsshown. In the bulk region, it is periodic, with the same
Aulbur, Jonsson, and Wilkins [5] quantified this effect periodicity as the local potential [9]. Close to the surface,
for real materials, while Resta [6] discussed the originthe density deviates from perfect periodicity, although this
of such a behavior in connection with long-range corre-effect decreases exponentially with the distance from the
lation effects. The present study emphasizes a more baurface [10].
sic role of the polarization in DFT: careful handling of The macroscopic polarization of such a finite solid is
the polarization is mandatory for polar solids, even un-directly linked to the total surface charge [11,12]. Its
der zero electric field. In polar materials, the spontaneousalue is equal to zero (modulo a half-quantum) if the
polarization computed from the Kohn-Sham (KS) wavecrystal is centrosymmetric [12,13], but otherwise can have
functions will be correct only if an exchange-correlationany value and must be calculated. For a long time the
homogeneous electric field is allowed throughout the mamacroscopic polarization was only accessible from the
terial, in which case the KS electronic system becomesurface charge and was a well-defined concept only for
metallic This field will appear in the exact DFT treat- finite solids. Recent theoretical advances have shown that
ment of a finite cluster but is forbidden when using BvK it can also conveniently be determined, up to a quantum,
conditions. Approximate density functionals such as thdrom a Berry phase of the correlated many-body wave
local density approximation (LDA) and the generalizedfunction of thebulk [12—16]. Within this approach the
gradient approximation (GGA) always fail to yield an macroscopic polarization appears as a bulk property and
exchange-correlation electric field: within these approxi-is unambiguously defined even for the infinite periodic
mations, using BvK boundary conditions or finite clusterssolid, which is of practical interest in solid steaé initio
incorrectly provide thesamevalue of the polarization [7]. calculations.
Any improvement to these functionals which retains a de- The breakthrough of King-Smith and Vanderbilt [14],
pendence only on the periodic density will be similarly leading to the modern theory of the polarization, was
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i () . A within DFT. [12]. We now show that the justification
\/\1/33}5\1‘5/}'\/\ of Vanderbilt and King-Smith apply to exact DRanly
when consideringdfinite solids, and not when applying
BvK periodic boundary conditions.

In the context of DFT, it is shown that the density
»le e o n(r) of the ground state of a system uniquely determines
Surface Bulk Surface the external potential up to a constant. Following Kohn
and Sham [2], one can introduce a fictitious system of
noninteracting electrons in an effective potenfia}; =
Vext + Vg + Vi (WhereV,, is the exchange correlation
potential) that reproduces the ground-state electron density
]J Blectrostatic of the real system. In the particular case wheegiodic

Potential boundary conditiongre imposed, although the KS effec-
I tive potential V¢ is constrained to reproduce the correct
periodic bulk density of the polar solid, there is no guar-
(b) Density antee that it will reproduce the corrgmblarization,since
this information is not contained in the criterion for the ef-
fective potential to be correct [17]. Such a periodic DFT
is based only on the periodic part of the density, while the
polarization is a completely independent quantity [4,6,13]
that depends on the phase of the correlated wave functions.
The polarization will be correct only in those solids where
a fundamental symmetry (such as centrosymmetry) con-
strains the polarization, or where external parameters, such
as the pressure, are fortuitously chosen.
ggeec;g’:l We illustrate this for a one-dimensional model semi-
conductor [18]. In this model the electrostatic poten-

tial is periodic and asymmetricVe .. (x) = V. cosz% +
darx

Vysin——~. A nonlocal self-energy operator, intended to
mimic the relevant many-body effects, has the same non-
local form as in Ref. [4]: 2 (x,x/, w) = Mgﬂx -
x'|) wheref(x) = Fo[l — cos%] is a negative function
- - with the periodicity of one unit cell angl( y) is a normali-
Surface |  Bulk | Surface > zed Gaussian of widthv.

First, the Schrddinger equation containing the self-
energy operator is solved by direct diagonalization using

a plane-wave basis set. The density is deduced from the
sum of the squares of the eigenfunctions. From this result,
using standard iterative optimization techniques, we con-

E(ff;crfg’:l struct anexactdensity-functional theory by determining
the local potentiaV.s(x) which, when filled withnonin-

FIG. 1. (a) The local electrostatic potential (external plusteracting electrons (no self-energy operator), reproduces

Hartree) of an insulator, and the corresponding ground-statthe same electron density as in the self-energy calcula-

density. In the bulk region the potential is periodic. Short-tion, Figure 2 presents the functidn..(x), as well as

circuited capacitor plates are also present. (b) The effectiv ; ; ;
potential that, when used in Kohn-Sham equations, is ablt(?-"Ie densityn(x), and the effective potentiales(x), for

to reproduce the periodic part of the density shown in (a)the following set of parametersiy = 4 a.u.,Ve =V, =

under Born—von Karman periodic boundary conditions. The2.72 eV, Fp = —4.08 eV, w = 2 a.u.

macroscopic polarization is not correct. (c) The effective Using the Berry-phase approach [13,14], we then com-

potential that, when used in Kohn-Sham equations, is able tgte the polarization [19]. In the self-energy calcu-

reproduce the density shown in (a), in all the regions of SpaCﬁ? . o . -3 .

The macroscopic polarization is correct [in contrast to (b)]. ation, the polarization '322'6_8 X 1077 electrons V\_”th
respect to the centrosymmetric system with= 0, while
that calculated from the Berry phase of the Kohn-Sham

actually carried out in the context of DFT. Later, theywave functions is21.99 X 10~* electrons. The two

argued [12] that the Berry phase of the occupied KSpolarizations differ by 3%, well outside the calculational
wave functions possesses an exact physical meanirggror bar. This value may be taken as an order of mag-
since the surface charge must be exactly reproduceditude estimation of the effect in real materials, and is

295

Bulk

Periodic Boundary Condition
Periodic Boundary Condition

-

Density

A




VOLUME 78, NUMBER 2 PHYSICAL REVIEW LETTERS 13 ANUARY 1997

25 - ‘ ' 0.8 Conduction States

20 0.6 %
< 15
> 0.4 -
St g SIS Fermi Energy
'.Tj. , TN . 4 0.2 5
‘E 5 L N\ .
< <~ Velec - - 4 0®

E I Y
5l N Valence States
AN {-0.4
_10 AN , FIG. 3. For sufficiently large clusters, the exchange-
0 1 2 3 4 correlation field will cause band overlap and hence metalliza-
Distance through the unit cell (a.u.) tion. Further increase in cluster size leaves the band edges

. . pinned as shown, and charge transfer occurs between the two
FIG. 2. The electrostatic potentidk..(x), the electron den- g rfaces.

sity n(x), and the Kohn-Sham effective potenti&ls(x) of
the model one-dimensional semiconductor are shown when

periodic boundary conditions are imposed [corresponding to . . . . .
Fig. 1(b)]. The Kohn-Sham electrons correctly reproduce thehe effective potential (Fig. 3). As the cluster is made still
electron density, but not the macroscopic polarization. larger, charge will flow freely from one face to the other

in order to maintain the correct macroscopic polarization.
The magnitude of the homogeneous electric field will now

compatible with the observed (and often satisfactory) acehange with the size of the cluster in order to maintain the
curacy of LDA polarization calculations for real ferroelec- potential drop: in the limit of large cluster size, the ef-
tric materials [20]. fective homogeneous electric field will be infinitesimally

The deficiency in the periodic-boundary approach, resmall, although nonzero. As mentioned in Ref. [22], an
flected in the Berry phase of the KS wave functions andnfinite system cannot sustain a finite homogeneous elec-
hence in the polarization, is that the exchange-correlatiofric field in its ground state. Here, an infinitesimal field
potential is prevented from having a component whichappears naturally in the DFT treatment of polar solids.
is linear in space [21]. The KS theorem demonstrates There is a strong similarity between this behavior and
that there is only one periodic effective potenti#él;  that of a system of two distant, different, open-shell atoms
that reproduces a particular periodic density. However[23], in which the exact exchange-correlation potential
once an additional linear component is allowed, therexhibits a long-range spatial variation to align the Kohn-
exists an infinite family of KS potentials that gives the Sham eigenvalues. There is also a connection with the
same periodic density but different polarizations [4]. Im-DFT metal/insulator paradox [24] in which an insulating
posing BvK conditions on the potential thus arbitrarily system may be described as metallic in DFT.
constrains the polarization to a specific, usually incor- In summary, for a polar insulator, when Born—von Kar-
rect, value. This restriction does not apply for the finiteman periodic boundary conditions are used, the polariza-
cluster, where application of the KS theorem shows thations calculated from the Berry phase of the Kohn-Sham
there exists a unique effective potential that, when used iwave functions and from the Berry phase of the correlated
the effective Hamiltonian, will generate the exact ground+wave function will differ, because the DFT effective po-
state densityeverywhere: not only in the bulk region tential is prevented from acquiring a linear part. When
(as in the BvK case), butlso in the surface region, re- a large cluster is used for the DFT calculation, a homoge-
sulting in the correct polarization. Figure 1(c) sketcheseous effective exchange-correlation “electric field” devel-
the behavior of such an effective potential. The linearops in order to correctly reproduce the polarization. The
part is necessary to yield the correct polarization in polakohn-Sham system becomes metallic.
crystals. This “exchange-correlation electric field” origi- The authors thank R. Resta, R. Martin, H. Krakauer,
nates in the ultra nonlocal dependence of the exchang®. E. Cohen, and I. Mazin for interesting discussions,
correlation energy in the surface charge pointed outnd acknowledge financial support from FNRS-Belgium
in Ref. [4]. (X.G.), the Concerted Actions program (X.G.), The

In the small cluster shown in Fig. 1(c), the magnitude ofRoyal Society and the Engineering and Physical Sciences
the exchange-correlation field is approximately indepenResearch Council (R. W. G.), the European Union (Human
dent of the cluster size, since the polarization correctiorCapital and Mobility Program Contracts No. CHRX-
relative to periodic DFT is constant. As the cluster is madeCT940462 and No. CHRX-CT930337), and the Academic
larger, a point will be reached where the variation in potenResearch Collaboration Programme between the FNRS,
tial from one side of the cluster to the other, due to the hothe CGRI, and the British Council.
mogeneous exchange-correlation electric field, reaches the
DFT band gap of the material. Beyond this point, the KS
electronic system imetallicand the band edges will “pin”  [1] P. Hohenberg and W. Kohn, Phys. R&&6, B864 (1964).
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