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Maximum-entropy theory of steady-state quantum transport
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We develop a theoretical framework for describing steady-state quantum transport phenomena, based on the
general maximum-entropy principle of nonequilibrium statistical mechanics. The general form of the many-
body density matrix is derived, which contains the invariant part of the current operator that guarantees the
nonequilibrium and steady-state character of the ensemble. Several examples of the theory are given, demon-
strating the relationship of the present treatment to the widely used scattering-state occupation schemes at the
level of the self-consistent single-particle approximation. The latter schemes are shown not to maximize the
entropy, except in certain limits.
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During the last few years marap initio calculations have calculations as is demonstrated in the second half of our
addressed the electronic structure of systems with nonzeqaper. Our formalism does not depend on the complexity of
electrical current 3 We will refer to these as the occupation the system, i.e., without restriction to noninteracting particles
scheme approachg®S) since in practice one occupies the or simple band-structure models.
right- and left-going scattering states up to two different The statistical DM, which represents an ensemble with
electrochemical potentialg" and u", respectively. The es- known or controlled averages of given operatdra; )
sential idea of the QS comes from Landaugr’s treat_ment of Tl’[pAi], is obtained by maximizing the information en-
coherent transport in terms of the transmission matrix of th? - - A . .
conductof Later, Caroli etal® and independently °oPY Slp]==Trlplog(p)], subject to constraints on the
Feuchtwanfj developed a formal theory of tunneling based 'aces of the above-meljtloned operatbis. the case of
on the technique of Keldysh nonequilibrium Green's guantum transpor'g, _experlments suggest that for a given tem-
functiond which could be extended to address coherenP€rature, composition and total current we obtain a well-
transport as well. Recently it has been shBunat these two ~ defined thermodynamic stater, in the case of N-shapaev
approaches are indeed equivalent at the level of a singlé&urves, a small number of states differing by applied bias
particle approximation in the spirit of Kohn-Sham density- Voltage. The maximum-entropy principle, together with
functional theory. However, the latter approximation is verythese physical constraints, simply represent the search in the
hard to justify. It is not clear what effective potential one Phase spaceHilbert spacg for the most likely density ma-
should use; the use of the local density approximation is &X- . . o
mere hope rather than a secure approximation. We also be- Firstly, the total energy is conserved. This constraint is
lieve that a certain difficulty might lie in the formal search @ssociated with the Lagrange multipligr corresponding to
for steady-state nonequilibrium Green’s functions using dnverse temperature for equilibrium or near-equilibrium sys-
unitary (Hamiltonian-drive evolution fort— from an un- tems. Conservation of the total energy is not in contradiction
disturbed system. For example, when we adiabatically tun‘f_‘"th _the dl'_53|pat|ve characte_r of the t_ransport. The dissipa-
on an external field, the Keldysh technique predicts ndion is realized through the increase in the energy flow be-
change in temperature, in contradiction with statistical therhind the nanocontactonstriction. Similarly, the number of
modynamics. We therefore believe that any alternative poin€l€ctrons is conserved and on an average is given by the total

of view is of great utility here. positive charge in the background, i.e., atomic nuclei. There-
We build such an alternative theory using the generalizeéore' a constraint on the number of partlclesl is used with the

lar ideas were heavily exploited in the development of thecurrentl should be the next thermodynamical parameter of
projector techniques for nonequilibrium statistical mechanicghe theory. On the contrary, the vast majority of present ap-
by Mori,'*!yet detailed application to concrete problems isProaches to quantum transport use the applied hidsin-

not widespread. Of the few papers, let us mention those oftéad. HoweverAV is not convenient for it is defined
Ng'? and Heinonen and Johnsbhwho consider current- uniquely only between two ideal reservoirs, each being in
carrying ensembles, similar to ours. However, in these pa€duilibrium. These could never be a part of a practical cal-
pers, the essential steady-state character of the ensemblecigation. In contrast, the current flowing through the system
not considered. This results in certain problems when dealintf 'epresented by a simple operator and is well-defined even
with the matrix elements of current operator which are noth the strongly nonequilibrium regime. We use the symhol
present in our work. Our theory treats the stationarity of thefor the Lagrange multiplier accompanying the current con-
nonequilibrium density matri¥DM) that involves constraint ~ Straint, and we later show thatis universally related ta V.

on an operatofthe current operator in our cgsehich does Finally we impose the steady-state conditighH]=0.

not commute with the Hamiltonian. At the same time, theFor this to have a nontrivial solution, the system must be
theory can be straightforwardly implemented for practicalinfinite along the direction of the current. Otherwise, the only
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steady state would correspond to zero current. This is equally 1Yo (EJE)+iL, o (E,E")(E'—E)=0, 4
present in the Keldysh formalism, where one has to first

consider the limit of infinite size, and only afterwards can thefor E#E’, we have

time evolution of the response to the turned-on transfer

Hamiltonian go to infinity. We note that this condition is a L. (E,E)
nontrivial one here. In previous work, it has been either sat- wat i(E—E’)
isfied automatically(equilibrium systems, nonequilibrium

but translationally invariant systeinsr not considered at all. SinceY(E,E’) is a result of a commutator, it is also propor-
To implement the steady-state constraint, we write thdional toE—E’. However, we need, ., (E,E’) to be zero
steady-state condition in any complete set of statefor E=E’ to keep the current atits given value and to satisfy
(E,a|[p,H]|E",a')=0, for all E,E’,e, anda’. This par- the fact thatl is also the result of a commutator with.
ticular notation stresses the fact that we work with a con-This is uniquely achieved by

tinuum of eigenstates ¢, normalized to a delta function of o , : ,
energy'® The indexa runs over the discrete set of degener- Lo (BE)=laa (BEE)A-A I|m+ew55(E—E ),
ate states at enerdy. Each of these equations must be now 0 (6)
guaranteed, with a separate Lagrange multipligy,.(E,E")

and the expression in the functional to be maximized can b#here

manipulated into

iY, o (E,E")
= =Al,(EE). (5

1 €
S(E-E)=— ————, ()
J dEAE' > Ao (E'E)XE,a|[p,A]|E a’) T(E-E) e
o’ which manifestly satisfies both conditions, since fir
=THA [p,AT1=Trp L], (1) =E’, med.=1. This is the stated resu(B). Equation(6)
can now be written in basis-independent form as
where we have introduceld=[H,X]. This form is suitable 1T
for the variation with respect to the DM. o L=A(-19, 1°=lim—]| T1(t)dt, @)
Collecting all the above terms we obtain the variational T2 T) -1
condition R
where the operatol® has the form otthe invariant part of
S—{loal( o))+ (Q+1){1)— B(AY + N the current operatowith respect to the time evolution, in-
(= (log(p))+( L= AH)+BuiN) troduced by Kubo in the linear response theBrwhere the
+BA(I) = B(L)}=0. (2)  time dependence of the operaidt) is determined by the

HamiltonianH. If we insert the solution Eq8) for the L in

The term 1+1)(1) guarantees the normalization of the the stationary DM obtained from E¢Q), we obtain the final
DM. We also note that we have deliberately introduced thgegylt for the statistical density matrix

parameterB in the definition of all the other multipliers so
that the limit3—o can be conveniently studied. As a result p=exp{Q—,8(I:|—,uN—Ai°)}. (9)

of variation we obtain the stationary nonequilibrium D This is th ¥ id . llv interact

- % P S ol is is the general form, valid even for a fully interacting

= - =Hn- —Al+L. . . . . ;
expl{2 ~BK], whereK =H = uN ~Al+ L. The practicality system. It is an interesting observation, that a sole require-

of this e>fpr(.assion relies on the knqwledgAe of theperator.  ment of the constraint on the time average of current operator
We obtain its form from the solution dfp,H]=0, as an s equivalent to the strong stationarity of the DM and the

equation forL. Expanding the DM in terms df, we see that  constraint on the current operator. We note thé&t iéontains
this is equivalent td —Al+L,H]=0. If we cast the last the electron-electron interaction, that interaction enters the

expression in the representation of the eigenstatéi;, of is invariant current operator in E8), so that interaction terms

seen that the role df is to remove the off-diagonal elements appear in the nonequilibrium DM_m a rather nontrivial way.
We will now deduce the meaning of the parameteiVe

of the current operator. We shall show below thashould consider two steady-state systems 1 and 2, with nonzero
be of the form currents (see Fig. 1 described by their respective DM'’s

, , ~ . ;31(2). The current is maintained with the parametais,,,
Lao(E,E) =140 (E,E)(A-AS(E-E")), ©) but we can equally well imagine that there are ideal reser-
~ . . ~ . voirs at far left and far right to which we apply bids/; ),
whereA is a finite constant, related @ asA=meA, wWith 4 thatA and AV is in correspondence. If we were to de-
e~1/ an infinitely small energy inversely proportional t0 scripe a single compound system, comprising weakly
the length of the system. The result is a finite number, Sinc%oupled systems 1 and 2, with only the total current being

by inspection of Eq(3) we deduce thad~| due tol~1. known, the DM would have had the forpy ., ,=exp{[H;
To prove Eq.(3) we setY= —AA[I,H] and write in the  +H,— u(N;+Ny)—A(IS+19)]). On the other hand, if we
basis of{|E,a)} the equation fol. as: weakly couple the originally disconnected system 1 and 2,
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) The statesyg ,(X) are unitary transformation of the scatter-
N Y ing states given by the eigenvectors of the matf¢€) at
W, A, each energy leveE. t,r andt,r are the usual forward and
0008000 ([ J backward transmission and reflection coefficients respec-
% tively, and finally k=y2E and k= \2(E+A¢) with A¢

being the drop in electrostatic potential energy. Crucially, the
1, scattering states appear here just as a convenient complete
g M <253 a set of eigenstates of the Hamiltonian and it is the stgtes
/ which are actually being occupied according to Fermi-like
’ occupancies in E¢(10). In the limiting case ofr(E)|—0,
V. we obtain the original right- and left- going scattering states,
& in agreement with the occupation scheme. On the other hand,

for [t(E)|—0 we get nearly their symmetric and antisym-
metric combinations. We discuss the physical significance of

haves. .= 5.5 Clearly. th ith ‘t these in later paragraphs.
\;)viz 21\:1%[;) 11*22 vf/)illlp ée thgasg,”n e ﬁﬁallv:elrgzzg,isl:vv;@ r:r? giﬁ ° Next we give our motivation~for the identification Afas
=A,, i.e., no change of total current, as well ad paindl,,  the applied bias throughV=2A. We look at the expecta-
is introduced by coupling. Exactly This happens when theion vglue of the current operator in a 1D perfect wire. In the
applied biasedV, , are identical, so we conclude thay ~ small A limit, we have
should be an universal function &f, ., and3. The univer-
sality comes from the fact that systems 1 and 2 are arbitrary. * dE27 N \/;
The ‘AV-meter’ could be represented by a Landauer’s con- =2a:201 fo eB(E*ZIa(E)f,u)_i_l(_l) [t(E)| k
cept of infinitely large reservoirs adiabatically connected '
through one-dimensiona{1D) conducting channéft We e - 5
leave detailed analysis of this situation for a future paper and = WZA“(EF” : (12)
here infer theA— AV relation from specific results in the o ) )
following, giving AV=2A, for smallA. This is a very gen- Since it is an experimentally well-established fact that the

eral thermodynamical statement and removes the detailegPductivity of a 1D channel is &/h,* we can directly
considerations of near-equilibrium in reservoirs from the acidentify 2A with the bias applied between two equilibrium
tual transport problem of interest in the nanocontact. reservoirs. Due to the general arguments above we know that
We will now demonstrate several features of the generathis relation is universgfor smaII"A), so it needs to have the
theory developed above, at the level of a self-consisterdame form for any system. Equatidt2) is in complete
single-particle approximation. In the single-particle approxi-agreement with Landauer’s form@laven though it comes
mation, it is sufficient to know the single-particle density from rather different considerations.
matrix for evaluation of any quantity, in our case the current In the following we will be concerned with the self-
and the electron density. These are well-defined for infiniteconsistent determination of the drop in electrostatic potential
system, unlike the total energy or total number of particlesA ¢, and a detailed discussion of the difference betw&eén
Since we deal with a system that is genuinely infinite, i.e.,and the applied biadV. Specifically, let us suppose that our
there is a potential drop when comparing the right and lefsystem consists of two identic&l-dimensional jellium-like
asymptotic regions, with uniform current flowing, we need toleads. Subtracting the conditions for local charge neutrality
resort to Matsubara Green'’s function techniques to obtain thin the right and left asymptotic regions lead to the equation

FIG. 1. Compound systemt12 (see textand related quantities.

density matrix unambiguously. The result is (B—):
, XE, o ¥) XE,o(X") fﬂdE _fo dk®
n(x,x")= dE% HER® 1] (10) L 5N =) mn(x—e)]= iz (13)

a Fermi-like distribution with the effective dispersid(k) This means th‘f"t the charge appearing below the potential
_E—Al (E). Th di lize the effective Hamil drop, on the right, must be exactly compensated by the
= o(E). The xg o(x) diagonalize the effective Hamil- - ) o6 transfered to the left by means of the occupancies in

tonianK. I ,(E) = =[t(E)|(«/K) " are the eigenvalues of the Eq. (10). We can analytically evaluate the left-hand side for
invariant current operator, which in the basis of right- andg % obtaining

left-going energy normalized scattering states has the form

. " Ap=2Alt?r[*=AV|t|r|?, (14
t*tE —rrt \/; independent of dimensionaliy. Through this we can relate
2mwI%(E)= (11 the 4-point conductanc&,p=1/A ¢ to the 2-point conduc-
e \/E —T*TE tanceG=1/AV. We immediately see, that the former gives a
K K surprising result G,p=(2€?/h)(1/|r|?), approaching the
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qguantum of conductance fti} — 0. This counterintuitive re-

sult can be understood in terms of the occupation of nearly E(k)
antisymmetric admixtures of right- and left-going scattering

states, present igg . (x). While this comes out of our for-

malism, we can expect that these combinatiornke limit of

a weakly connected systemill be destroyed by a finite life- w

time of the single-particle states, arising from any weak scat- :/ 7 :
tering by phonons or other electrons. If we model this fact by /
canceling the off-diagonal terms in the invariant current ma- ,

trix Eq. (11), the resulting 2-point conductance turns out to . 4

be G=(2e%h)|t|* and the 4-point conductancé,p
=(2e%/h)([t|?/|r|?), while the relation in Eq(14) remains

v v

unchangedG,p obtained without the off-diagonal terms is },L+
in complete agreement with the seminal work ofttiker 7 /
et al,* while the two-point formula makes the conductance Z///E/{////
smaller by factoft|2. We would also like to stress that the E;

: P
off-diagonal elements may be expected to play a role for T %
situations whenjt|~1, leading to higher conductances than :
those obtained from the Landauer formula.

In order to elaborate the relation between the maximum-
entropy theory and OS, we observe that even though we
work with only one parameter related to the number of par-

ticles, u, from Eq.(10) we see that we can define two aux-  FIG. 2. The effective E(k)) and the true energyE(k)) disper-
iliary Fermi energiesu ., up to which the statee==* are  sjion relations with the corresponding Fermi energiesw. ,
occupied fromu. —Al . (u+)=u (see Fig. 2 In the linear andu_.
response regime we gefu=u, —u_=2A|t| which to-
gether with Eq.(14) results inA¢=Aplt||r|% Similarly,  bias. Even though the treatment of the fully interacting sys-
without the off-diagonal elements we hatg.=2A|t|> and  tem within this scheme seems rather arduous, the possibility
A¢=Aplr|% The latter relations demonstrate most clearlyof describing the nonequilibrium steady state through the
the difference between the maximum entropy and OSMmaximum principle opens up new ways forward. One pros-
Firstly, when ignoring the off-diagonals, the applied hia¢  Pect is a theory in the spirit of the density-functional theory
in the OS is heuristically identified witth while in our ~ that could permit the use of a rigorous single-particle ap-
treatment the thermodynamical arguments given in the firs@r:oaCh to noner?wllb:jlum calculat(ljonﬁ. Inhthe second p?rt of
. ~ . . t trated the t -
part of this paper suggesf2= A u/|t|?. Second, it is admix- € paper We have demonsiated e Meoty on simpie ex

f righ d left-0oi h ied mples, discussing in detail the character of the density ma-
tures of right- and leit-going states that are occupied accortyiy ithin the single-particle approximation. We have shown

Ing to uR andut, not the states themselves. We believe thatnat for systems with no reflection probability our theory

particularly for|t|~1 this effect can be verified experimen- gives results identical to the usual occupation scheme. This

tally based on the differences between conductances comingreement slowly breaks down as the transmission is de-

from these two approaches. This comparison between Ogreased and the relevant states become coherent combina-

and maximum entropy shows that only fiif~1 does the tions of right- and left- going states. We have derived a

usual OS of scattering states approximately maximize th&imple formula for the electrostatic potential drop and dis-

information entropy. cussed its relation to the applied bias within the context of
In conclusion, we have shown how the maximum-entropyour theory.

formalism can be applied for nonequilibrium steady currents.
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