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Self-interaction in Green’s-function theory of the hydrogen atom
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Atomic hydrogen provides a unique test case for computational electronic structure methods, since its
electronic excitation energies are known analytically. With only one electron, hydrogen contains no electronic
correlation and is therefore particularly susceptible to spurious self-interaction errors introduced by certain
computational methods. In this paper we focus on many-body perturbation theory (MBPT) in Hedin’s GW
approximation. While the Hartree-Fock and the exact MBPT self-energy are free of self-interaction, the cor-
relation part of the GW self-energy does not have this property. Here we use atomic hydrogen as a benchmark
system for GW and show that the self-interaction part of the GW self-energy, while nonzero, is small. The
effect of calculating the GW self-energy from exact wave functions and eigenvalues, as distinct from those
from the local-density approximation, is also illuminating.
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I. INTRODUCTION

Ab initio many-body quantum mechanical calculations are
crucially important to our understanding of the behavior of
atomic, molecular, and condensed matter systems. It is well-
known that predicting the behavior of these systems requires
the description of electronic correlation. While density-
functional theory (DFT) in the local-density approximation
(LDA) does this with startling success in many cases, it does
so at the expense of a nonphysical electron self-interaction.
For delocalized electron systems this self-interaction be-
comes negligible, but in atomic or strongly localized elec-
tronic systems it plays an important role. If one is interested
in the calculation of quasiparticle excitation spectra, many-
body perturbation theory (MBPT) is formally a correct way
to proceed. For solids, MBPT in Hedin’s GW approximation
[1] has become the method of choice, but it is also increas-
ingly being applied to molecular systems and clusters. The
GW self-energy can be decomposed into correlation and ex-
change parts, where the latter is the same as the Fock opera-
tor encountered in Hartree-Fock theory and thus self-
interaction free. While the exact self-energy must also be
free of self-interaction, the correlation part of the GW self-
energy does not have this property. To investigate the influ-
ence of self-interaction in the GW approach the hydrogen
atom provides an ideal case because the exact solution is
known analytically.

Hydrogen in its solid phase has previously been studied
within the GW approximation by Li ef al. [2], who analyzed
the transition between the high-pressure solid phase and the
low density, atomiclike limit. For individual atoms, GW elec-
tron removal and addition energies (we use the term “quasi-
particle” energies by analogy with the solid-state situation)
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have been investigated by Shirley and Martin [3], Dahlen et
al. [4,5], Stan et al. [6], and Delaney et al. [7], although
hydrogen was not considered. These studies have shown that
GW, in general, gives quasiparticle properties which are
much improved over DFT and Hartree-Fock methods, even
for atoms.

In this paper we use the hydrogen atom as a benchmark
system to quantify the self-interaction error in the GW ap-
proach. Since the self-energy diagrams beyond GW, known
as the vertex correction, must by definition correct this self-
interaction error, our findings are relevant for research into
vertex functions for the many-electron problem.

Attention has recently focused on the prospects for im-
proving the usual non-self-consistent GW calculations by
choosing an initial Green’s function, G, that is physically
more reasonable than the LDA (e.g., [2,8,9]). We explore this
here by determining the sensitivity of the self-interaction er-
ror to the use of the exact hydrogenic orbitals and energies in
place of those from the local-density approximation (LDA).
We also assess the error introduced into GW calculations by
employing first-order perturbation theory in solving the qua-
siparticle equation (as opposed to the full numerical solu-
tion), and we analyze the quasiparticle wave functions that
emerge from a full solution.

II. HARTREE-FOCK VERSUS DFT-LDA

In many-body perturbation theory the quasiparticle exci-
tation energies ¢;, and wave functions i;, are the solutions
of the quasiparticle equation

H()(l') (v[Iiu-(r) + 2 J dr'M(,,,/(r,r’ ;G?g) lvbio"(r,) = E?glrllio'(r)’
(1)

where, in Hartree atomic units, Ho(r)z—%V2+vm(r) and
U,(r) is the external potential. It is customary to divide the
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mass operator M into the local Hartree potential (v) and the
nonlocal self-energy ()

My (r,r'56) =vh(r)S(r—r') 8,5 + 20 (r,x'5€). (2)

Omitting correlation contributions from 2, yields the exact-
exchange or Hartree-Fock case, where the self-energy takes
the form

occ
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and the Hartree potential is given by
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Since the sum runs over all occupied states the Hartree po-
tential contains an artificial interaction of electrons with
themselves. For the hydrogen atom this so-called self-
interaction of the electron is the only content of the Hartree
potential and may be calculated analytically using the exact
ground-state wave function

1
Pl (r) = —=e" (5)
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The self-interaction is a positive, decreasing function and
hence tends to delocalize the wave function (i.e., incorrectly
pushes its weight away from the nucleus).

In Hartree-Fock the self-interaction terms introduced in
the Hartree potential are exactly canceled by the Fock opera-
tor X,. This makes Hartree-Fock exact for one-electron sys-
tems such as the hydrogen atom. However, the lack of cor-
relation renders Hartree-Fock wunsuitable for many
polyatomic systems of interest.

Of more practical use is Kohn-Sham [10] density-
functional theory, which by virtue of the Hohenberg-Kohn
theorem [11] establishes an exact and universal functional
relationship between the ground-state density n(r) and the
total energy E of a system. Mapping the system of interact-
ing electrons onto a fictitious system of noninteracting elec-
trons, that reproduces the exact density, yields the Kohn-
Sham equations:

[Ho(r) + v(r) + 0, (1)1 () = € b1 (r). ()

All electron-electron interactions beyond the Hartree mean
field are encompassed by the exchange-correlation potential
v,., which is formally given as the functional derivative of
the exchange-correlation energy E,,:

OE, [n]

on(r) ®

ch(r )=
In analogy to the quasiparticle equation (1) the Kohn-Sham
eigenvalues e?f,s are often interpreted as excitation energies,
although this is not formally justified.

PHYSICAL REVIEW A 75, 032505 (2007)

One of the most common approximations for E,. is the
local-density approximation (LDA) [10], in which the many-
body exchange and correlation contributions to the total en-
ergy (E,.) are included by comparison with the homoge-

neous electron gas (HEG):

E>Mn]= f drn(r) e [n(r)]. ©)

Here [12] we follow the parametrization of Perdew and
Zunger [13] for the exchange-correlation energy density
é;.EG[n(r)] of the homogeneous electron gas based on the
data of Ceperley and Alder [14].

The LDA has been remarkably successful at accounting
for correlation even in systems that are highly inhomoge-
neous. However, it is well-known that the introduction of
correlation in the LDA comes at the expense of the exact
treatment of the self-interaction. Because the exchange func-
tional is taken from the homogeneous electron gas it no
longer cancels the spurious self-interaction present in the
Hartree term. In most systems this is a minor effect and is
more than compensated by the improved treatment of the
electron correlation. The LDA can be improved by explicitly
removing the self-interaction [13], however, this becomes
increasingly difficult as the system’s complexity is increased.

III. THE GW APPROXIMATION

In Hedin’s GW approximation [1] the self-energy in Eq.
(2) is given by

.
1 .
S o(rr' €)= _277,’ de' e °G,, (r,r' ;e + € )W(r,r'se),
—00

(10)

where ¢ is an infinitesimal positive time. At the level of GW,
spin flips are not accounted for [2], and the input Green’s
function is diagonal in its spin representation G,
=Ga'o" 50.0./.
In common with usual GW calculations, a Kohn-Sham
Green’s function G is used for G, given by [15]
(1) iy (")

’ ¢i0
oot =2 s (1)

and makes the noninteracting polarizability

o
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and the dielectric function spin-dependent (though spin-
diagonal). The inverse dielectric function in the random-
phase approximation

-1
el(rr' e)= [5(r—r’) —fdr”v(r,r”)E Xt €)
(13)

and thus the screened Coulomb interaction
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FIG. 1. (Color online) Radial probability distributions of the
hydrogen 1s state: the quasiparticle wave function deviates only
slightly from the exact wave function, when the latter is used as a
starting point (exact+GW). The LDA wave function, on the other
hand, is more delocalized as a result of the inherent self-interaction.
Adding quasiparticle corrections (LDA+GW) brings the resulting
quasiparticle wave function slightly closer to the exact one again.
The inset shows the difference to the exact wave function.

Wy(r,r',e) = f dr"s \(r,x", e)v(r",r') (14)

then emerge as spin-independent quantities, giving rise to the
simple spin dependence in the GW self-energy [Eq. (10)].

For numerical convenience and physical insight we sepa-
rate the GW self-energy (10) according to

Eo‘zr=_i|:(;o'zrv +G00-(W_U)] =E)(;’(T+EZ'(T' (15)

The first term (27 ) corresponds to the Fock operator in Eq.
(3) and will exactly cancel the self-interaction introduced by
the Hartree potential. It is therefore immediately clear that
any deviation from the exact result for hydrogen can only
come from the correlation part of the self-energy (%¢,).

The incorrect self-interaction affects the electron removal
energies (here, the ionization potential). For electron addition
energies such as the electron affinity, the entire Hartree po-
tential has a physically reasonable interpretation, since it acts
on the wave function of the originally unoccupied state
which has not contributed to the electron density.

IV. COMPUTATIONAL APPROACH

We solve the quasiparticle equation (1) with the GyW,
self-energy (10) for the quasiparticle energies and wave
functions by fully diagonalizing the quasiparticle Hamil-
tonian in the basis of the single particle orbitals of the non-
interacting system. Since the ground state of the hydrogen
atom (5) is spherically symmetric, it is sufficient to describe
all non-local operators in the GW formalism by two radial
and one spin coordinates, r, ', and o and one angular coor-
dinate, 6, that denotes the angle between the vectors r and r’.
The self-energy (10) then assumes the much simpler form
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TABLE 1. Quasiparticle energies (eV) for the 1s state of hydro-
gen (the ionization potential) obtained by diagonalizing the quasi-
particle Hamiltonian (1). Two GW calculations are shown, starting
from the LDA and from exact Kohn-Sham, respectively. For com-
parison, the Hartree-Fock (HF) and LDA eigenvalues are also
shown.

Exact HF LDA LDA+GW Exact+GW

-13.61 -13.61 -6.36 —-12.66 -13.40

S oo, r",0;0) = 2 [S1,(r,r s 0) P (cos 6)8,.,, (16)
=0

where P;(cos 6) is a Legendre polynomial of order /.

The Legendre expansion coefficients of the self-energy
are calculated directly, thereby surpassing the need for a nu-
merical treatment of the angular dependence. We use a real-
space and imaginary time representation [16] to calculate the
self-energy from the noninteracting Green’s function G,. The
expression for the self-energy on the real frequency axis is
obtained by analytic continuation [16]. The current imple-
mentation has been successfully applied to jellium clusters
[17] and light atoms [7].

Our code allows us to solve the quasiparticle equation (1)
for the GW self-energy with no further approximation. How-
ever, in order to separate the contribution that arises from the
correlation part of the self-energy from that of the exchange
part and the Hartree and exchange-correlation potential we
also solve the quasiparticle equation with the frequently
made approximation that the quasiparticle wave functions
are given by the Kohn-Sham wave functions. The resulting
equation for the quasiparticle energies is

ig = GETS + <E;(T> + <Ez'0(€lqg)> - <U)t;'c>’ (17)

where the brackets ( ) denote matrix elements with respect to
the Kohn-Sham wave function ¢;,.

In order to explore the role of the starting points for a GW
calculation, two possible Kohn-Sham input Green’s func-
tions are chosen. First, the familiar LDA, and, second, the
exact Kohn-Sham solution for the hydrogen atom which has
the exact wave function of the hydrogen 1s state (5) and
v,.(r)=—vp(r). (This exact Kohn-Sham Green’s function, in-
cidentally, differs from the exact Green’s function of the hy-
drogen atom because the exact Kohn-Sham unoccupied ei-
genvalues do not signify electron affinities. The exact
Green’s function cannot be constructed from any orthonor-
mal set of one-particle wave functions.)

V. RESULTS AND DISCUSSION

The calculated ionization potentials (from a full solution
of the quasiparticle equation) are shown in Table I. The self-
interaction errors in the two GW quasiparticle energies are
seen to be fairly small: 0.95 eV when the approximate LDA
Kohn-Sham starting point is used, and the much smaller
0.21 eV when the exact Kohn-Sham starting point is used.
Clearly the LDA is such a physically poor representation of
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the correct physics in this extreme system (owing to the large
self-interaction present in the LDA calculation itself, as re-
flected in the large error in the LDA Kohn-Sham eigenvalue)
that it forms a very unsuitable starting point for GW. How-
ever, a physically reasonable starting point reduces the GW
self-interaction error to a small size.

Since 3, gives a nonvanishing contribution to the hydro-
gen ls state, even if the analytic solution is used as a starting
point, the quasiparticle wave function will differ from the
exact one. Figure 1 shows that the GW correlation gives rise
to a slight delocalization of the quasiparticle wave function
in this case. This relaxation, however, now makes the quasi-
particle wave function an eigenfunction of the quasiparticle
Hamiltonian. In the LDA the self-interaction error is much
more pronounced and the wave function becomes signifi-
cantly more delocalized. The GW self-energy corrects this to
a small extent (as reflected in the quasiparticle wave func-
tion), but the remaining discrepancy reiterates the unsuitabil-
ity of the LDA as a starting point for GW in this self-
interaction-dominated atom.

For an analysis of the contributions to the self-energy we
turn to the perturbative solution of the quasiparticle equation
using Eq. (17), shown in Table II. When the exact Kohn-
Sham wave function and eigenvalues are used, as in the
Hartree-Fock case the exchange part of the self-energy is
seen to cancel the self-interaction contribution from the Har-
tree potential exactly. The correlation part, on the other hand,
is not zero, but amounts to a self-polarization of 0.25 eV.
When the LDA is used as the starting point the influence of
the LDA wave function on the exchange operator becomes
apparent and it reduces from —17.00 eV in the exact case to
—15.38 eV. This corrects the highly overestimated LDA ei-
genvalue for the 1s state of —6.36 eV (see Table I) to
—13.49 eV. However, in this case the contribution from the
correlation part of the GW self-energy is even larger than
when starting from the exact case and increases the quasipar-
ticle energy to —12.93 eV.
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TABLE II. Quasiparticle energies (eV) for the 1s state of hydro-
gen obtained by solving Eq. (17). The contributions from the ex-
change () and correlation (2.) part of the self-energy are com-
pared to that of the exchange-correlation potential (v,,) for the LDA
and the exact case (v,.=—vy) as a starting point. Exact value for €
is —13.61 eV.

Kohn-Sham G e’ (=) (V) (o
LDA -12.93 -15.38 -8.25 0.56
Exact -13.35 -17.00 -17.00 0.25

VI. CONCLUSION

We have performed spin-resolved benchmark calculations
for the GW formalism using the analytically known solutions
of the hydrogen atom as a reference, making the self-
interaction error introduced by the correlation part of the GW
self-energy directly assessable. When the exact Kohn-Sham
Green’s function is used as the input to GW, the self-
interaction error is small (0.21 eV, 1/30 the size of that in
the LDA), but not negligible. If the LDA Kohn-Sham
Green’s function is used, as done in many GW calculations
for more complex systems, a larger self-interaction error re-
mains, inherited from the LDA starting point.
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