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We derive an expression for the four-point conductance of a general quantum junction in terms of the density
response function. Our formulation allows us to show that the four-point conductance of an interacting elec-
tronic system possessing either a geometrical constriction and/or an opaque barrier becomes identical to the
macroscopically measurable two-point conductance. Within time-dependent density-functional theory the for-
mulation leads to a direct identification of the functional form of the exchange-correlation kernel that is
important for the conductance. We demonstrate the practical implementation of our formula for a metal-
vacuum-metal interface.
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I. INTRODUCTION

Impressive progress has been achieved within the non-
equilibrium Green’s function �NEGF� formulation of quan-
tum transport using the simple ground-state density-
functional exchange-correlation potential in a self-consistent
formulation1,2 �NEGF-DFT�. However, limitations of the lat-
ter approximation were recently identified.3–10 For instance,
NEGF-DFT’s omission of the derivative discontinuity in the
exchange-correlation energy functional was found respon-
sible for serious errors in transport calculation through local-
ized resonant levels.5,6 Improvements through an �spin-� un-
restricted NEGF-DFT formulation have been argued to
describe properly some aspects of the Coulomb blockade in
quantum junctions.7 At this level of the theory the exchange-
correlation potential of the equilibrium system vxc is respon-
sible for the electron interaction effects.

In a further theoretical development Na Sai et al.3 identi-
fied a dynamical correction to the resistance of a quantum
junction stemming from the contribution of the exchange-
correlation electric field to the overall drop in the total po-
tential. They estimated the correction within time-dependent
current-density functional theory11 �TDCDFT� and showed
that it has its origin in the nonlocal density-dependence of
the functional. The very applicability of time-dependent
density-functional theory �TDDFT� to the problem of quan-
tum transport in the long-time limit has been discussed in
depth by Stefanucci and Almbladh8 and by Di Ventra and
Todorov.9

Several authors have proposed alternative treatments that
avoid the complexities of the exchange-correlation kernels of
TD�C�DFT, either by treating the central region with the con-
figuration integration method12,13 while approximating the
nonequilibrium distribution of the electrons, or by using the
usual NEGF-DFT approach in combination with a model
self-energy within the central region.14 A more systematic
approach to the self-energy can be obtained through well
tested approximations such as the GW method.15,16 Due to
the large computational demand so far only very small sys-
tems with restricted size of the basis set could be studied.

However, the results are encouraging, e.g., the Kondo effect
phenomenology seems to be well described within the self-
consistent GW method.16

Nonetheless, a systematic approach for addressing the
conductance of a fully interacting system at the ab initio
level is not available. This is partly due to the fact that the
very formulation of the NEGF formalism17 is based on the
concept of noninteracting electrodes and demands partition-
ing of the system and the electron-electron interaction.18 Ste-
fanucci and Almbladh8 showed that the partitioning can be
avoided in principle but practical inclusion of the many-body
interactions into the formalism seems to be extremely cum-
bersome. Fortunately, partitioning is not necessary within the
linear response formulation. Several authors have addressed
the conductance of interacting system of electrons within the
framework of the Kubo formalism arriving at a two-point
Landauer-like formula for the conductance10,19–21 by making
certain assumptions about the steady-state total electric field.
There is, however, a problem with this derivation since it
ignores the charge redistribution in the conducting system
when the steady state is forming. In fact, ignoring these as-
pects one quickly arrives at various unphysical corrections to
the conductance.22 The problem of charge redistributions has
been first pointed out by Thouless.23 Later Kamenev and
Kohn24 cast it into a self-consistent framework for many-
terminal conductance.

In our work we further develop the formalism that treats
the charge redistribution correctly, find its physical interpre-
tation in terms of a time-dependent transient process that
leads to the establishment of a current-carrying steady state,
and derive a closed formula for the four-point conductance
that is well defined formally as well as physically. To de-
scribe quantum transport it is necessary to consider the pro-
duction of a steady state with nonzero current in a generic
quantum junction, starting from the ground state �or more
generally, from an equilibrium ensemble at finite tempera-
ture�. Physically, we expect to achieve a steady state that has
a uniform average current I flowing through the system, ac-
companied by a total potential exhibiting a drop V across it.
As was advocated many years ago by Landauer,25 V arises
from the resistivity dipole, a local charge imbalance of a
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piled-up charge in the front, and depleted charge behind a
quantum junction. Physically such a state is reached by at-
taching a macroscopic battery to the circuit that pumps elec-
trons from one electrode to the other until a certain potential
difference between these two is established. For modeling
purposes this mechanism cannot be used directly.26,27 Here
we will use a construct based on an auxiliary homogeneous

vector potential A� aux�t�=−�0
t E� aux�t��dt�, pointing in the direc-

tion of the eventual flow of current, giving a momentum
transfer to all the electrons in the infinite system within a
finite interval of time. �This auxiliary vector potential is
similar in spirit to the one used by Gebauer and Car to model
a nanojunction using periodic boundary conditions.28 There,
in contrast to our work, the vector potential grows linearly in
time for all t�0 and the work exerted on the system must be
dissipated via auxiliary phonons located in the electrodes.�
The infinite extent of the system is formally essential to our
treatment. It is necessary for a continuous spectrum and for
giving a momentum transfer at t=0 to infinitely many elec-
trons present in the system so that the current will flow for
all times t�0. However, we would like to mention at this
point that in practical calculations the necessity of the infinite
extension can be relaxed so that the formulation can be used
for practical ab initio calculations.

II. THE NONLOCAL CONDUCTIVITY AND
CONDUCTANCE

The response of the current density to a general external
electric field is given within the linear response theory by29

j��r�,t� = �
−�

t

dt�� d3r���� �r�,r��;t − t�� · E� ext�r��,t�� . �1�

For simplicity we introduce a symbolic notation for the

above equation in the form j�=��� �E� ext. In our work, the role

of the external field is taken by the auxiliary field E� aux that is
homogeneous and has only a finite duration, i.e., it is absent
for large times and it bears no information about the drop in
potential in the long-time limit. The latter is contained within

the induced field E� i�r� , t�, which appears explicitly when con-
sidering the irreducible �or proper� conductivity,30,31

j� = ��� �E� aux = ��� irr��E� aux + E� i� . �2�

The induced field accounts for the electron-electron interac-
tion at the Hartree level, which is usually referred to as the
long-range effects of the Coulomb interaction, whereas the
rest of the interactions between electrons, the short range
part, is included within the irreducible conductivity. The
quantity in which we are primarily interested in is the con-
ductance, defined as G= I /V, where V is a voltage drop. For
G, the detailed spatial and time dependence of the current
density and the induced field while the steady current is be-
ing established are of no relevance. We define the voltage

drop as the overall drop in potential of the induced field E� i

along the current flow �along the z axis� between far left and
far right,

V = lim
t→�

�
−�

+�

dzEz
i�r�,t� , �3�

which will be indicated by a superscript 4P in the associated
four-point conductance G4P. This definition is most suitable
for ab initio modeling and does not suffer from ambiguities
present when one considers two chemical potentials. In me-
soscopic physics, the above definition of conductance is re-
ferred to as the four-point conductance �hence the super-
script� since it represents measurement of the voltage drop
using contacts different from those acting as a source and
drain of the current. In the extreme case of a 1D conducting
channel of noninteracting, but locally neutral electrons it re-
duces to the well-known expression G4P= �2e2 /h��T /R�. This
is in contrast with the most frequently encountered two-point
conductance G2P, where the voltage drop is understood to be
the difference in electrochemical potentials of the two mac-
roscopic electrodes �� /e �see Fig. 1�. Since the electrodes
are not part of the quantum-mechanical model of the con-
ducting channel, the familiar Landauer result G2P

= �2e2 /h�T is believed not to be derivable from the Kubo
formalism32 and its plausible derivations are always accom-
panied with steps motivated by physical insight and argu-
ments about phase-incoherent adiabatically widening
electrodes.33 Here we show that for a nanocontact between
massive electrodes the four-point conductance approaches
the two-point Landauer formula. However we never make a
reference to �� /e and we consistently work with the drop in
the induced electrostatic potential only. Our claims for its
applicability for the experimental two-point conductance fol-
low from the fact that for massive electrodes connected with
a nanojunction the current density in the electrodes goes to
zero and thereby the drop in the induced �Hartree� potential
is an excellent indicator of the phenomenological quantity
�� /e. The latter argument serves as a motivation to use the
G4P as a conceptually and formally well defined quantity to
characterize systems of fully interacting electrons in any ge-
ometry of the junction.

FIG. 1. �Color online� Measurement of the voltage between the
macroscopic electrodes, where the current density is zero, gives the
two-point conductance G2P= I / ��� /e�. Measuring the voltage drop
inside the simulation box �supercell�, where the current density is
nonzero, gives the four-point conductance G4P= I /V. Increasing the
supercell the two quantities approach each other �see Sec. V�.
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III. SINGULARITY IN THE RESPONSE FUNCTION AND
THE TWO-POINT CONDUCTANCE

An essential property of the conductivity response func-
tion of extended systems capable of coherent transport is
their singular long range character for large times or—
equivalently—as the frequency approaches zero.21 To show
this behavior explicitly we need to introduce a few geometri-
cal details of the studied nanojunction which do not restrict
the generality of our argument. We consider a geometry
where z is a direction of the current flow, q a reciprocal
vector in that direction, and for clarity we assume that the
system can be put into a periodic supercell along the x ,y
directions. The conductance G4P is then a conductance for
the area of the supercell S. To find the current flowing
through S, we integrate Eq. �2� across the cross-sectional
area. This naturally leads to the cross-section integrated
conductivity34

�irr�z,z�;t� = �
S
�

S

dS� · ��� irr�r�,r��;t� · dS��, �4�

which relates the current to the z component of the total field

I�z,t� = �t

dt��
−�

�

dz��irr�z,z�;t − t���Eaux�t�� + Ei�z�,t��� .

�5�

The singular long-range character appears as the indepen-
dence of �irr�z ,z� ; t� on z and z� as t→� which when per-
forming the Fourier transforms z ,z�→q ,q� and t→�+ i�,
takes the form21

lim
�→0

�irr�q,q�,� + i�� = 2	G2P
�q�
�q�� , �6�

where we have formally introduced the two-point conduc-
tance G2P as the strength of the above mentioned singular
character. To extract the strength we introduce a linear func-
tional G�� �

G���irr� = lim
�→0+

� � dqdq�

2	
�irr�q,q�;i�� , �7�

for which we simply have G2P=G���irr�. It has been shown
previously that this identification is correct for noninteracting
electrons.21 Further motivation to refer to it as a two-point
conductance for interacting systems will be discussed in Sec.
V.

IV. ONSET OF THE CURRENT INSIDE THE ELECTRODES

Equation �5� can now be analyzed in the light of the
above observations. First, let us consider a distant part of one
of the electrodes �z��0 for times such that 1 /EF� t
� �z � /vF, where EF and vF are the Fermi energy and Fermi
speed, respectively. In this regime, the response in the elec-
trodes ��z��0� is determined by the electrode itself, indepen-
dently of the nanojunction. After a short relaxation time
��1/EF� the auxiliary field establishes a uniform �i.e., z in-
dependent� current inside the electrode

I�z,t� =� dz��
−�

t

dt��irr,e�z,z�;t − t��Eaux�t�� , �8�

where �irr,e is the irreducible conductivity of the electrode
only35 while preserving the local charge neutrality within the
electrode. We are free to choose any time dependence of the
field as long as it delivers finite change of momentum for
each electron and thus establishes the eventual steady cur-
rent; the most convenient choice is Eaux�t�=−Aaux
�t�, where
Aaux is the magnitude of the change in the homogeneous
vector potential at t=0.

This picture is not valid as one approaches the region of
the nanojunction, i.e., for z�0. Still, since the current will
keep coming from the left electrode and disappearing into
the right electrode �there is always such �z��0 that for any
time t we have t� �z� /vF and hence the above analysis can be
applied�, the charge will have to pile up in front of the junc-
tion and similarly deplete behind the junction, creating a re-
sistivity dipole.25 The incoming current cannot be decreased
by some form of reflected front/disturbance from the junc-
tion since this would break the local charge neutrality within
the electrode, leading to strong opposing fields. Hence the
dipole around the junction and therefore the drop in the in-
duced potential V will grow, increasing the current in the
junction region until it becomes equal to the current I deep
inside the electrode, as described in the preceding paragraph.
This will be possible since in the linear regime we expect I
=G4PV.

Having in mind this physical process, the established uni-
form current at long times expressed by Eq. �8� for the dis-
tant electrode applies at all positions including z=0. We ex-
press the electrode conductivity �irr,e in reciprocal space for
long times as

I�t → �� = − lim
�→0+

� dq�irr,e�q,q� = 0;i��Aaux �9�

=F���irr,e�Aaux, �10�

where we use a small imaginary frequency i� to perform the
long-time limit.29 The linear functional F�� � will be further
discussed in Sec. VII.

V. THE FOUR-POINT FORMULATION OF THE
CONDUCTANCE

The above physical picture can be directly used within
Eq. �5�. We write the conductivity of the whole system as the
conductivity of an infinitely long electrode alone �irr,e plus a
further term �irr,j characterizing the presence of the junction
�irr=�irr,e+�irr,j. Equation �5� is thereby cast into the form

I = �irr,e�Eaux + �irr,j�Eaux + �irr�Ei. �11�

Evaluating this equation at z=0 and using the definitions of
the functionals F� and G�, Eq. �11� can be written as

I = F���irr,e�Aaux + F���irr,j�Aaux + G���irr�V . �12�

From Eq. �8� we know that in the long-time limit, the first
term on the right-hand side �RHS� is itself equal to I, so that
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the second and third terms sum to zero, from which we eas-
ily arrive at the central result of this paper

G4P =
F���irr,e�

F���irr,e� − F���irr�

 G���irr� , �13�

where we have used the fact that F���irr,j�=F���irr�
−F���irr,e� and that V=�dzEi�z�=Ei�q=0�.

It is very instructive to apply the above result for a simple
1D noninteracting gas with a single scattering center.36 For
this system, the noninteracting conductivity in the small fre-
quency limit has a form24

�0�q,q�;i�� =
2

	

vF�

vF
2q2 + �2
�q − q��

− R
2

	

vF�

vF
2q2 + �2

2

	

vF�

vF
2�q��2 + �2 . �14�

The irreducible conductivity of the homogeneous 1D gas,
corresponding here to the electrode in the general case, is
simply the first part of the above expression

�0,e�q,q�;i�� =
2

	

vF�

vF
2q2 + �2
�q − q�� . �15�

It is straightforward to see that using the above forms
we have G���0�= �1−R� /	=T /	, F���0,e��vF /	�, and
F���0,j��RvF /	�, and we arrive at the four-point conduc-
tance G4P= �1/	��T /R�. The arguments of local charge neu-
trality in the electrodes and its consequences are very closely
related to the original comment by Thouless23 and a more
recent work by Kamenev and Kohn.24 In the form presented
in Eq. �13� it is valid for nanojunctions of any shape as long
as we can put them into a supercell, including the extreme
case of a planar metal-vacuum-metal junction for which we
will demonstrate its applicability in Sec. VII.

The generality of Eq. �13� can be used to show the
equivalence of the two-point and four-point conductances for
nanojunctions with massive electrodes. The demonstration is
based on the observation that for such a geometry
F���irr,e��F���irr� and hence the prefactor containing the
F’s in Eq. �13� goes to 1. The mentioned inequality is im-
mediately clear from the following argument: F���irr,e� gives
the current flowing in the electrodes when the vector poten-
tial is changed from zero to Aaux, whereas F���irr� formally
gives current as a response to the same disturbance but in a
fictitious system having the same geometry as the real nano-
junction but for which the long-range Coulomb interaction is
missing. This implies that the local charge neutrality is not
enforced �since only the irreducible response enters F�� and
as a result most of the electrons coming from one electrode
will be reflected from the nanojunction and decrease the cur-
rent. Hence the resulting current will be much smaller in this
second case and the inequality is fulfilled. This formally jus-
tifies Landauer’s arguments in favor of the expression G
=T /	 as the conductance of a nanojunction between two
phase-randomizing and adiabatically widening reservoirs. As
we can clearly see, it is only the widening that is really
needed to have the conductance of the junction as a whole be

given by Eq. �7�. This explains our motivation to refer to the
latter quantity as a two-point conductance even for interact-
ing electronic systems. The argument applies also to opaque
barriers, not necessarily having a constriction, which has
been explored in previous works37,38 and is also demon-
strated in Sec. VII.

VI. INCLUSION OF EXCHANGE AND CORRELATION
INTO CONDUCTANCE

Having established the validity and generality of Eq. �13�
we can proceed to approximations that go beyond noninter-
acting or Hartree-like interacting electrons. The simplest way
to do so is within the framework of time-dependent density-
functional theory. Some doubt about the applicability of the
latter might arise from the dynamics deep in the electrode
described in Sec. IV. There, the induced current is dominated
by a divergenceless component that cannot be related to a
time-dependent density, which is the only physically relevant
quantity within the TDDFT. However, at the level of Fermi-
liquid theory, this divergenceless current is identical to that
of a noninteracting system due to the backflow of
quasiparticles.39 Hence for this part we do not expect correc-
tions arising from the exchange and correlation and we
should expect F���irr,e�=F���0,e�, where �0,e is the nonin-
teracting conductivity of the electrode. On the other hand,
the response described by the rest of Eq. �11�, leading to the
voltage drop in the induced potential, is essentially localized
around the nanojunction and is completely described by the
time and space dependence of the electronic density which is
amenable to the TDDFT approach.

To cast our theory into the TDDFT framework, we need
to reformulate the functionals F� and G� since the conduc-
tivity is not directly accessible within TDDFT. The irreduc-
ible conductivity is simply related to the irreducible
polarization21,30

�irr�q,q�,i�� = −
�

qq�
�irr�q,q�;i�� , �16�

which is conveniently calculated via the density response
function calculation within TDDFT. To incorporate this we
also introduce new functionals of the irreducible polarization

F��irr� = F�	−
�

qq�
�irr�q,q�;i��
 , �17�

G��irr� = G�	−
�

qq�
�irr�q,q�;i��
 �18�

for which we give explicit expressions suitable for direct
numerical evaluation in reciprocal and real space representa-
tion in the Appendix. The irreducible polarization satisfies
the Dyson equation

�irr�q,q�;i�� = �0�q,q�;i�� +� dq�dq��0�q,q�;i��


fxc�q�,q�;i���irr�q�,q�;i�� , �19�

where �0�q ,q� ; i�� is the noninteracting Kohn-Sham density
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response function, and fxc�q� ,q� ; i�� is a nonlocal
frequency-dependent exchange-correlation kernel.40 The
above two equations give the four-point conductance of an
interacting electronic system: for a given kernel fxc one
needs to invert the Dyson equation �19�, substitute the result
into Eq. �16�, and employ the general expression �13�.

However, we can gain more insight by multiplying Eq.
�19� by −� / �qq�� and taking the limit �→0. Clearly, the
resulting left-hand side is singular in q, with the strength
being G2P according to Eq. �6�. The strength of the first term
on the right-hand side of Eq. �19� multiplied by the same
factor gives the two-point conductance of the noninteracting
Kohn-Sham system G2P,0. The difference between these two,
i.e., the correction due to the exchange-correlation kernel, is
then nonzero only if the last term in Eq. �19� also leads to a
singular form. This observation can be used to deduce the
forms of the kernel that do influence the conductance, since
the general character of � for small � is well known. The
most interesting choice, making use of the character of �0/ir

�qq�, is fxc�q ,q� ; i��= �

qq�
A�q ,q� ; i�� where A is well be-

haved: A�q ,q� ; i��→Rdyn=A�q=0,q�=0��0 for �→0. The
resulting four-point conductance then takes the form

G4P =
F��0,h�

�1 + G��0�Rdyn�F��0,h� − F��0�
G��0� . �20�

In the case of a narrow junction between massive electrodes
and using the arguments leading to Eq. �13�, we obtain

G4P �
G��0�

1 + G��0�Rdyn =
G0

1 + RdynG0 , �21�

i.e., in this very important case Rdyn represents part of the
dynamical resistance, having origin in exchange-correlation
effects and can be accounted for by adding this resistance in
series with the Kohn-Sham result.

An approximate correction of this form has, in fact, been
identified by Na Sai et al.3 for interacting electronic systems
with weakly inhomogeneous potential along the direction of
the current flow. For such systems it is possible to show that
a purely longitudinal exchange-correlation electric field used
in their treatment within TDCDFT11,40 is equivalent to a con-
tribution to the TDDFT kernel of the asymptotic form for
small q ,q�

fxc
����q,q�;�� � −

i�

qq�
A� dz

4�

3
� �zn�z�

n�z�2 
2

= −
i�

qq�
A2Rdyn,

�22�

where A is the cross-sectional area of the considered system,
n�z� is the electronic density, and � is the dynamical viscos-
ity of a homogeneous electron gas.11 We should note that for
homogeneous systems Rdyn=0 since �zn�z�=0. This is impor-
tant since the functional form fxc

��� given above and the lim-
iting process would not lead to a finite result for a homoge-
neous system. It is interesting to note that the nonlocal
character of the kernel, i.e., fxc�1/q2, has also been found
responsible for significant improvement in the ab initio stud-
ies of the optical spectra in many materials.41,42

A very popular approximation for the exchange-
correlation kernel is the adiabatic local-density approxima-
tion �ALDA� �Ref. 43�

fxc
ALDA�r,r�� = fxc

ALDA�n0�r��
�r − r�� �23�

fxc
ALDA�n0� = d2�n0�xc�n0��/dn2, �24�

where �xc�n0� is the exchange-correlation energy per particle
of a homogeneous electron gas �HEG� of density n0, leading
to a kernel in the reciprocal space of the form
fxc

ALDA�q ,q� ;��= fxc
ALDA�q−q� ;��→B���
�q−q�� , B���→B

�0 for �→0. It has been argued by several authors that
ALDA should not contribute to any change in the
conductance.3,6 The basis of this argument comes from the
fact that one can account for the exchange and correlation
effects either via the exchange correlation kernel, or by using
the exchange-correlation electric field. The latter can be
shown to contribute to the conductance only if there is a
nonzero drop of the exchange-correlation potential across the
system, which is absent within any local or semilocal ap-
proximations. The argument is valid also within our theory
when applied to Eq. �11�. However, it is interesting to ex-
plore the consequences if one stays within the kernel-based
treatment. Here the proper definition of the four-point con-
ductance is essential. If one directly uses the two-point for-
mula in Eq. �7� for metal-vacuum-metal interfaces, one finds
nontrivial ALDA corrections solely due to the fact that the
Kohn-Sham conductivity does redistribute the charge at long
distances when a localized Kohn-Sham potential with non-
zero drop is applied.22 The numerical results for metal-
vacuum-metal presented in Sec. VII show a cancellation be-
tween these ALDA corrections within G��irr� and those
entering F��irr� within the precision of the numerics so that
the G4P coming from Eq. �13� remains unaffected by the
ALDA kernel, as it should be. It is important to emphasize
this point because studies of exchange and correlation effects
using the two-point formula only for 1D atomic chains20 or
quantum wires19 may easily lead to incorrect conclusions.

VII. CONDUCTANCE OF A METAL-VACUUM-METAL
INTERFACE

The metal-vacuum-metal junction is one of the simplest
systems for ab initio study of electronic transport and hence
it conveniently serves as a demonstration that the formula
�13� can be numerically implemented even for realistic sys-
tems. In practical implementations we cannot work with an
infinite system, for which the response function that enters
the functionals F�¯� and G�¯� is needed. Instead, we take
a finite system with z� �−L ,L� with zero boundary condi-
tions at the end points. This brings certain restriction on the
zero-frequency extrapolation that we will discuss below. The
two perpendicular directions can be dealt with easily in the
reciprocal space for this particular system.

In our calculations we employ two jellium slabs of thick-
ness l and density given by rs=3.0 a.u., separated by a dis-
tance d, i.e., 2l+d�2L, where the supercell extends from −L
to L. The calculation of �0�z ,z� ; i�� is performed at the self-
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consistent LDA level.44 Subsequently for the ALDA calcula-
tion we invert the Dyson equation �4� in real space and
thereby calculate the irreducible response �irr�z ,z� ; i��. The
inclusion of the nonlocal kernel, such as that arising from the
viscosity of the electron liquid, can be done directly via Eq.
�20�, avoiding the inversion of the Dyson equation. For the
evaluation of F�¯� and G�¯� we employ their real space
form �Appendix�, integrating over the simulation cell,

G���irr� = ��
−L

0 �
0

L

dzdz��irr�z,z�;i�� , �25�

F���irr� = ��
−L

0

dz�
−L

L

dz��irr�z,z��z�, �26�

keeping � finite for the moment. For extrapolation we need
to use imaginary frequencies ��EF so that the transient dy-
namics is removed from the response function. On the other
hand, the finite extent of the electrodes restricts the limiting
procedure for �→0; one can go down no more than to
imaginary frequencies �min�vF / l �vF�0.64 a.u. for rs
=3 a.u.�.

To demonstrate the precision and scaling of our calcula-
tion we first present calculations for a non-self-consistent
square-barrier potential �width 8 a.u., height 0.25 a.u.� be-
tween two 3D electrodes �EF=0.2 a.u.�. The chosen values
are reasonably close to our self-consistent potential but at the
same time allow for comparison with the exact value of
G2P=lim�→0G���0� using the analytically known form of the
transmission probability. The calculated values of G���0�
shown in Fig. 2 for finite slabs and finite frequencies clearly
show finite size effects below �min. However, even for fre-
quencies larger than �min we observe a remanent horizontal
oscillatory dependence of the conductance curves on the
electrodes’ width. Even though the amplitude of the oscilla-
tions for smaller widths are substantial, the overall conver-
gence to the exact value is evident. The oscillatory character

of the Fermi energy can be effectively used for identifying
the most suitable system widths for an optimal estimate of
the infinite system conductance. One should choose the
widths for which the Fermi energy attains local minima �in-
set in Fig. 3�, which is the method we use within our work.

Similar extrapolation to zero frequency can be done for
F�¯�, or even better for �
F�¯� which approaches a con-
stant value for an infinite system. However, since our aim is
to calculate the four-point conductances, we directly extrapo-
late the expression �20� which behaves very similarly as the
G2P��� described in detail in the preceding paragraph.

We now apply our methodology to a fully self-consistent
calculation for a sequence of vacuum widths d
=1, . . . ,10 a.u. to study the effect of the recently suggested
viscosity-related exchange-correlation correction due to Na
Sai et al.,3 and to explore the cancellation of ALDA correc-
tions between F�¯� and G�¯�. The overall dependence of
the conductance on d is exponential. For clarity of presenta-
tion we show first the exponentially decreasing form of the
calculated Kohn-Sham conductance G0

4P in the upper panel
of Fig. 4; the small symbols indicate error bars in G0

4P due to
uncertainty in the extrapolation to zero frequency. For this
system the absolute values of the corrected conductances af-
ter inclusion of either TDDFT kernel—ALDA kernel or vis-
cosity kernel—lie within these indicated error bars. As we
have discussed in Sec. VI, the ALDA does not lead to any
correction, but numerically this result is not trivial. In fact,
both the G��ALDA� and F��ALDA� change due to the presence
of the exchange-correlation kernel �24�, but these changes
are canceled in the total expression for the four-point con-
ductance �13� within the numerical precision of the extrapo-
lation to zero frequency. On the other hand, the corrections
due to the finite viscosity of the electron liquid do lead to a
small but systematic decrease in the conductance, which is
about 5% in the examined range of relative conductances.3,4

While this is smaller than the error bar of the extrapolated
conductance, since the viscosity correction itself does not
involve extrapolation �Eq. �24��, the resulting error bar of the
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FIG. 2. �Color online� Dependence of G2P���=G���0� on fre-
quency � for several electrode widths l �vacuum is fixed for d
=8 a.u.�. For frequencies below the thick line, given by �min�l�
=vF / l, the finite size effects appear, so that ��0.05 are used for
extrapolation to zero. The vertical shifts of the individual curves is
caused by the oscillation of the Fermi energy �see also Fig. 3�.

FIG. 3. �Color online� Dependence of the extrapolated G2P on
the electrodes’ widths l for d=8.0 a.u. for a square-barrier potential.
The inset shows the oscillations in the Fermi energy and the con-
ductance G2P in a restricted range of l for a self-consistent calcula-
tion. Choosing widths for which the Fermi energy attains its minima
�indicated with dots� leads to a stable estimate of the conductance
of the infinite system.
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relative correction, shown in the lower panel of Fig. 4, is
noticeably smaller than the correction itself, and thus the
correction is significant.

Finally we numerically demonstrate the appropriateness
of the two-point conductance G2P=G��� for opaque barriers.
The graph in Fig. 5 clearly shows that for d�4 the
F�¯�-dependent prefactor is very close to 1, which supports
our arguments in Sec. V as well as is in agreement with
previous numerical work.37

VIII. CONCLUSION

In conclusion, we have presented a unified formalism,
based on singular character of response functions, that gives
the conductance of a general system of interacting electrons.
We have derived a closed formula for the four-point conduc-
tance in terms of the many-body response functions: the ir-
reducible conductivity or the irreducible density response.
The formulation allows for clear demonstration of the valid-
ity of the Landauer formula for broadening or opaque nano-
junctions. Furthermore, we have utilized our formulation for
examining the exchange and correlation effects on the con-
ductance within the time-dependent density functional
theory. We have shown that the long time limit determines
the functional form of the exchange-correlation kernel that
can lead to nonzero corrections. The exposed theory can be
also used for ab initio calculations for which the achievable
precision in conductance calculation for a given size of a
finite-size simulation cell has been demonstrated on a simple
metal-vacuum-metal junction.
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APPENDIX: EVALUATION OF FUNCTIONALS F AND G

The functionals F�¯� and G�¯� were given explicitly in
the Fourier-transformed form in Eqs. �9� and �10�, and Eq.
�7�, respectively. In numerical calculations it is more advan-
tageous and numerically stable to use their representation in
real space. To achieve this, we use the inverse transform of
the irreducible density response function defined by

��q,q�� =� dzdz�

2	
e−iqz��z,z��eiq�z�. �A1�

Several times we will have to resolve the integral of the type

f�z0� =� dq

q
eiqz0��q,q�� . �A2�

Since ��q , . . . ��q for small q, the integral is well defined
and we can choose to interpret the apparent singularity 1 /q
as 1/ �q+ i
� or 1/ �q− i
� with 
→0+. Taking the former �the
final result is independent of this choice� and using the in-
verse transform �A1� we find

f�z0� = − i� dzdz���z0 − z���z,z��eiq�z�, �A3�

where ��z� is the unit step function.
Using the definition of G�¯� and using the integral �A3�

twice with z0=0 we readily obtain

G��� = lim
�→0+

��
−�

0

dz�
0

�

dz���z,z�;i�� . �A4�

The real-space form of the F is obtained using again the
Fourier transform
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FIG. 5. �Color online� The relative difference between the four-
point and two-point Kohn-Sham conductances. The difference be-
tween the two diminishes for opaque barriers.
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FIG. 4. �Color online� The Kohn-Sham conductance G0
4P with

error bars resulting from uncertainty in the extrapolation to zero
frequency �upper panel� and the viscosity-corrected conductance
G�

4P �shown relative to G0
4P� �lower panel�, as a function of the

vacuum width d. Only the corrections due to the nonlocal kernel
lead to changes in the conductance. The ALDA kernel does not
affect the Kohn-Sham result within numerical error.
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F��� = ��� dq

qq�
� dzdz�

2	
e−iqz��z,z��eiq�z��

q�=0
�A5�

=� − i��
0

�

dz�
−�

�

dz���z,z��
eiq�z�

q�
�

q�=0

�A6�

=��
−�

0

dz�
−�

�

dz���z,z��z� �A7�

since we can Taylor expand e−iq�z� with the linear term giv-
ing the only nonzero contribution.
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