
Key Maths and Physics
for Statistical Mechanics

Rex Godby, Department of Physics, University of York

1 Introduction

This handout summarises the key mathematical tools (Sections 2-4) and physical ideas (Sec-
tions 5-6) that you need for my third-year course ‘Statistical Mechanics’. They are all from your
previous mathematics and physics courses.

All this material is fairly basic, but you need to have it at your fingertips and be ready to apply
it without a moment’s hesitation. If that’s not yet the case, I advise you to use your notes and
textbooks from the relevant previous courses to get up to speed on this material before it’s used
in my course.

I’d welcome suggestions for changes or additions to future versions of this handout. And – as
always in this course – don’t hesitate to ask me for help if you need it.

2 Elementary Mathematics

2.1 Powers of x like x−2

Ensure you can sketch a graph of, say, x−2 and know that it goes to infinity as x approaches
zero, and goes gradually to zero as x becomes large.

2.2 Exponential functions like e−ax

Ensure you can sketch a graph of e−ax and know that it goes rapidly to zero as x becomes large.

2.3 Gaussian functions like e−ax2

Ensure you can sketch a graph of e−ax2
and know that it goes even more rapidly to zero as x

becomes large.

2.4 Taylor series (including Maclaurin and binomial series)

• Taylor expansion of the exponential function: ex ≈ 1 + x for |x| � 1

• Binomial expansion of (1 + x)n: 1
1+x ≈ 1− x for |x| � 1
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2.5 “Pokémon law”

Very often we will come across a function which is a product of two terms, one of which goes
to zero, and the other of which goes to infinity, i.e. 0 × ∞, requiring careful analysis. The
“Pokémon law”, which helps us in such cases, is my informal name for the fact that, as x → ∞,

• e−x falls to zero more rapidly than xn rises to infinity, so that their product e−x xn → 0,
i.e. the exponential “wins”

• x−n falls to zero more rapidly than ln x rises to infinity, so that their product x−n ln x → 0,
i.e. the power “wins”

• In short, exponentials beat powers, and powers beat logs.

2.6 More challenging exercises in curve sketching

Try sketching the following curves, all of which are important in statistical mechanics. (In each
case, you may assume that symbols other than the one being varied are positive constants.)

(a) c2e−mc2/2kT as a function of c from 0 to ∞;

(b) 1
2 h̄ω +

h̄ω

eh̄ω/kT − 1
as a function of T from 0 to ∞ (taking particular care for high T);

(c)
1

e(ε−µ)/kT + 1
as a function of ε from −∞ to ∞;

(d)
1

e(ε−µ)/kT − 1
as a function of ε from µ to ∞.

2.7 Sum of geometric series

a + ar + ar2 + ar3 + ar4 + ... =
a

1− r
, provided that |r| < 1

3 Calculus

3.1 Differentiation of basic functions

Ensure you can differentiate xn, ex, ln x, sin x, cos x, both on their own, and in combinations
(making use of the chain rule below).

3.2 Chain rule of differentiation

When differentiating, we will frequently use the fact that

dy
dx

=
dy
du

du
dx

.

E.g.
d

dx
(ln(sin x)) =

1
sin x

. cos x = cot x

and
d

dx
(e−x2

) = e−x2
.(−2x) = −2xe−x2

2



3.3 Product rule of differentiation

d
dx

(u(x) v(x)) = u
dv
dx

+
du
dx

v

E.g.
d

dx
(
x2e−x) = 2xe−x + x2(−e−x) = (2x− x2)e−x

3.4 Integration by change of variable

The idea is to rewrite a problematic integral in terms of a new variable of integration, such that
the new integral can be performed (or looked up in tables). E.g.

∞∫
q=0

q4eh̄cq/kT

(eh̄cq/kT − 1)2 dq =

∞∫
x=0

(
kTx
h̄c

)4 ex

(ex − 1)2

(
kT dx

h̄c

)
=

(
kT
h̄c

)5
 ∞∫

0

x4ex

(ex − 1)2 dx

 =

(
kT
h̄c

)5 4π4
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where we choose to write x = h̄c
kT q and thus dx = h̄c

kT dq, and the final step makes use of a
standard integral from tables.

3.5 Three-dimensional integrals in spherical polars

If a function f happens to be a spherically symmetric function of position (i.e. f depends on r
only, not θ or φ) then

∫
all space

f (r) dV =

∞∫
r=0

f (r) 4πr2dr

(the 4πr2dr can be thought of as the volume of a thin spherical shell).

3.6 Your table of mathematical formulae

Your official departmental table of mathematical formulae (that you should all be familiar with,
since a copy will be provided to you in exams) contains many useful results related to calculus
that can save you a lot of time. Be sure that you are ready to make best use of it. Results relevant
to statistical mechanics include

• Gaussian definite integrals of the form
∫ ∞

0 xn e−ax2
dx

• Specific exponential definite integrals like
∫ ∞

0
x3

ex−1 dx

• Many indefinite integrals

The table may be downloaded from https://www.york.ac.uk/physics/internal/learning/

assess/pastexampapers/
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4 Probability and Statistics

4.1 Equally-likely elementary outcomes

If a fair coin is tossed three times, each of the eight possible outcomes (HHH, HHT, HTH, HTT,
THH, THT, TTH, TTT) is clearly equally likely, and so has a probability of 1

8 . The probabil-
ity of getting two heads and a tail is therefore 3

8 , since three of these eight outcomes fit that
description.

4.2 Permutations

A permutation is an ordered arrangement of objects (i.e. the same objects in a different order
count as a separate permutation). The number of permutations of N distinguishable objects is
the factorial N! (since there are N ways of selecting the first object, then N− 1 ways of selecting
the second, etc.).

If some of the objects are indistinguishable, the expression N! is larger than it should be. For
each group of identical objects, we must undo the overcounting of permutations, by dividing
by the number of permutations of those identical objects among themselves. E.g. the number of
permutations of 3 identical red Smarties and 2 identical yellow Smarties is

5!
3! 2!

= 10 .

4.3 Stirling’s approximation for N!

For N large, ln(N!) ≈ N ln N − N.

4.4 Probability distribution functions

If f (x) is the probability distribution function for a random variable x, then f (x) dx gives the
probability that the variable’s value is between x and x + dx. It follows that

• the total area
∫ ∞
−∞ f (x) dx is equal to 1

• the mean value of x is given by x =
∫ ∞
−∞ x f (x) dx

• the mean value of x2 is given by x2 =
∫ ∞
−∞ x2 f (x) dx

5 Quantum Mechanics

5.1 Schrödinger equation

In quantum mechanics, the possible energies of a system are given by the various values1 of ε
(each one accompanied by a wavefunction ψ) that satisfy the (time-independent) Schrödinger
equation, which for a one-particle system takes the form

1I write ε rather than E here because our actual use of the Schrödinger equation will generally be for single-
particle systems, and I prefer to reserve the symbol E for the total energy of the overall system of many particles.
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− h̄2

2m
∇2ψ(r) + V(r)ψ(r) = ε ψ(r) ,

where V(r) (often called “the potential” for short) is the potential energy of the particle at r.

5.2 Harmonic oscillator

x

V(x)

V(x) = 1
2 mω2x2

ε0 = 1
2 h̄ω

ε1 = 3
2 h̄ω

ε2 = 5
2 h̄ω

ε3 = 7
2 h̄ω

The one-dimensional simple harmonic oscillator is a
familiar and important system in both classical me-
chanics and quantum mechanics. It is defined by
the potential V(x) = 1

2 mω2x2 (which in classical me-
chanics yields the equation of simple harmonic mo-
tion mẍ = −dV/dx = −mω2x, reminding us that ω
is the angular frequency of the oscillator). In quan-
tum mechanics the possible energies ε which satisfy
the Schrödinger equation are given by εn = (n+ 1

2 )h̄ω,
where n = 0, 1, 2, 3, ....

5.3 Particle in a box

x

ψ(x)

0 L

x

y

z

O

L

L

L

We will need only the well-known case of a square-
well potential with infinitely high walls, so that the
potential is 0 between x = 0 and x = L, and ∞
elsewhere2. In one dimension the solutions of the
Schrödinger equation are

ε =
h̄2q2

2m
, ψ(x) =

{
A sin qx, 0 ≤ x ≤ L

0, otherwise

where the wavevector3 q is a positive integer times
π/L and A is a normalisation constant. (The Figure
illustrates the state with q = 9π/L.)

In three dimensions (where the box is a cube L× L× L),
the method of separation of variables may be used, to-
gether with the above analysis of the one-dimensional
problem, to obtain

ε =
h̄2q2

2m
, ψ(r) =

{
A sin qxx sin qyy sin qzz, inside box

0, outside box

where qx, qy and qz are the three components of the
wavevector q, each one a positive integer times π/L,
and q2 = q2

x + q2
y + q2

z .

2Caution: in your quantum mechanics courses you probably analysed a well running from x = −a to x = a, so
my L is 2a, and the shifted origin of x makes all my wavefunctions sines rather than alternating cosines and sines.

3I use q rather than k for wavevector in this course to avoid confusion with Boltzmann’s constant.
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6 Miscellaneous Physics

6.1 Phonons

Phonons are vibrational waves in a crystalline solid, in which the atoms vibrate about their
equilibrium positions with an angular frequency ω, which depends on the wavevector q of the
mode. For each wavevector q there are multiple phonon modes, each with a different ω: in the
simplest case of a crystal with one atom per unit cell there are three modes (one longitudinal
and two transverse) for each q. It is convenient to characterise the phonons through the dis-
persion relation ω(q). In a crystal of size L× L× L, the allowed wavevectors q are exactly the
same4 as for the quantum-mechanical “particle in a box” problem above.

6.2 Electromagnetic waves in a vacuum

Electromagnetic waves in a vacuum travel with a fixed speed c, so that ω = cq. For each
wavevector q there are two modes (with the same ω), corresponding to the two possible di-
rections of polarisation of the electric field perpendicular to q. In a box of size L× L× L, the
allowed wavevectors q are exactly the same as for the quantum-mechanical “particle in a box”
problem above.

6.3 Thermodynamics

One of the achievements of statistical mechanics is to place the theory of thermodynamics on
a secure fundamental footing based on quantum mechanics, so you will, I hope, notice all
the ideas of thermodynamics (including the “laws” of thermodynamics themselves) emerging
from statistical mechanics. It is, therefore, helpful to have the ideas of thermodynamics in your
mind as you think about statistical mechanics.

Rex Godby, January 2013 (version 1.0)

4I use the “zero” boundary conditions generally used in statistical mechanics, but it may be noted that the
alternative (“periodic”) boundary conditions conventional in solid-state physics allow both positive and negative
values of qx, etc., while doubling their spacing; this affects some intermediate details of calculations of properties
of a crystal, but not the final answers.
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