
Using Association Rule Mining to Predict
Opponent Deck Content in Android: Netrunner

Nick Sephton∗, Peter I. Cowling∗, Sam Devlin∗, Victoria J. Hodge∗, and Nicholas H. Slaven†
∗York Centre for Complex Systems Analysis, Department of Computer Science, University of York, United Kingdom

Email: njs523@york.ac.uk, peter.cowling@york.ac.uk, sam.devlin@york.ac.uk, victoria.hodge@york.ac.uk
†Stainless Games, Isle of Wight, United Kingdom

Email: nicks@stainlessgames.com

Abstract—As part of their design, card games often include
information that is hidden from opponents and represents a
strategic advantage if discovered. A player that can discover
this information will be able to alter their strategy based on
the nature of that information, and therefore become a more
competent opponent. In this paper, we employ association rule-
mining techniques for predicting item multisets, and show them
to be effective in predicting the content of Netrunner decks. We
then apply different modifications based on heuristic knowledge
of the Netrunner game, and show the effectiveness of techniques
which consider this knowledge during rule generation and
prediction.

I. INTRODUCTION

A variety of games often include incomplete or hidden
information as a form of challenge to the players, indeed
most such games would be far more trivial if such an element
was excluded. Card games in which players bring decks of
their own construction to play are now relatively common
place, and are represented both in physical card gaming (e.g.
Magic: The Gathering1), and in digital gaming (e.g. Blizzard
Entertainment’s Hearthstone2). In such games, knowledge of
the content of an opponent’s deck represents a potentially
powerful strategic knowledge which can be exploited to
significant advantage. This is true of competition outside of
the game domain also, as being able to adequately predict the
strategy of a potential competitor will likely give significant
advantage.

In this paper we consider a deck of cards to be a multiset
consisting of a known number of cards, each of which
has a type identifier. We then use a variety of rule-mining
techniques applied with heuristic knowledge to attempt to
predict the content of the deck after observing a specific
number of cards chosen at random. It is important to note
also that our game of choice is sufficiently complex, such
that constructing a deck in the manner a human might is
substantially more difficult than prediction using any method
we have attempted here. Human players generally construct
decks by identifying a central idea for the deck, then fitting
cards into the deck that either support that concept or appeal
to the player in some other way. While our techniques here
produce similar results, there is no clear identification of

1http://magic.wizards.com/
2http://us.battle.net/hearthstone/en/

concept, and all cards are connected, not selected for any
other appeal.

This research could also be applied outside the realm of
games, as this problem represents a highly complex, partially
observable system with specific rules which govern the
system construction. Optimising association rule mining to
these complex requirements is clearly of interest as a general
advancement of research in this area. The techniques here
could easily be converted for use in other fields which have
similar complex requirements on sets or multisets, simply
by applying heuristic knowledge to data mining and rule
generation processes as performed here.

The remainder of this paper is organised as follows. In
section 2, we present a summary of related works on Rule
Association Mining and other relevant techniques. Section
3 discusses the Android: Netrunner game which was the
main focus for this work. In section 4, we discuss our
experimental methods, the methods we used to generate
association rules, and also the algorithms which we used to
make deck predictions. In section 5, we present our results,
and section 6 contains our conclusions and some notes on
potential future work.

II. RELATED WORK

The prediction of an opponent deck is effectively a form of
opponent modelling [1], [2], [3], except with the important
distinction that we are modelling strategic decisions which
took place before the game started. As the opponent can’t
change their pre-game behaviour due to game experience,
we do not need to create a full opponent model, only an
estimation of actions which have already been performed.
There has been little work in this specific area before, with
the exception of a single application of machine learning to
the game of Hearthstone [4], which achieved a very high
prediction rate on a limited card set.

A. Association Rule Mining

Association Rule Mining is the determination of correla-
tions between a set of items [5]. It is also known as Market-
Basket Analysis, due to the common usage of determining
which products a shopper may purchase based on what
is already in their shopping basket. A typical rule-mining
algorithm functions by generating rules that describe which
items are likely to be included in a partially observed set,

given the items in the observable part of the set. Itemsets are
drawn from the data such that each itemset describes a cor-
relation between items. Association rule mining is employed
in many application areas, including intrusion detection [6],
web usage mining [7] and bioinformatics [8].

A commonly used algorithm in association rule mining is
Apriori [9]. Apriori first generates all 1-itemsets that appear
in the data at least a number of times equal to a predetermined
support value, then passes this generation onward to create a
second generation of 2-itemsets. This process continues until
an empty generation is found (that is a generation with no
candidates that appear at least support times in the data.)
Each generation member then creates a single association rule
which describe the correlation recognised by that member.

There are many variations on the Apriori technique to
generate rules [10]. Most notable of these are a technique
which attempts to identify the n-most interesting itemsets
for rule generation rather than using a minimum support
value [11], [12]. Some techniques also use functional lan-
guages rather than support constraints [13], and others use
lattice and graphing techniques [14].

III. ANDROID: NETRUNNER

Android: Netrunner is a two-player strategy card game
published by Fantasy Flight Games3, which includes ele-
ments of bluffing and deception. Netrunner is similar to other
popular card games such as Magic:The Gathering, and is
described as an LCG (Living Card Game [15]).

Due to the nature of the game, the content of an opponent’s
deck is critical strategy information, and a player who is able
to accurately model their opponent’s deck is at a substantial
advantage. There are currently more than 600 cards released
for Netrunner, so accurately modelling a deck is a significant
challenge. The combination of the wide number of choices,
plus the complex and specific rules for which cards may
be included in decks makes Netrunner deck construction a
highly intricate process.

During a standard match of Netrunner, opponents do not
have access to the content of their opponents deck. Access to
such information would provide a substantial advantage to a
player, as they would both be able to predict their opponent’s
likely strategy, and also determine which strategies they are
poorly defended against.

Netrunner has a well documented rules structure for deck
building4. Each deck has a single identity card, which pro-
vides a Side, Faction and a certain amount of Influence.
Decks may only include cards associated with their side, but
may spend influence to include cards from other Factions.

Every Netrunner deck has exactly one Identity card which
defines some rules for that deck, most notably a Side, an
amount of influence and a Faction. There are exactly 2 sides
(named Runner and Corp), and each card in Netrunner is
associated with one side and cannot be included in decks
associated with the other side. Identities which are from the

3http://www.fantasyflightgames.com
4https://images-cdn.fantasyflightgames.com/filer public/2e/66/

2e66279a-0b5c-4d12-80b1-754289b5ff0c/adn01 rules eng lo-res.pdf

corp side must also include a specific number of agenda
points, which are provided corp cards (the specifics of agenda
points are not relevant to this work, other than to recognise
that there is a required number of agenda points for some
decks to include, which presents an additional restriction
upon decks.) All non-identity cards also have a Faction and
a Influence Cost, the latter of which describes the amount of
influence which must be paid to include the card in a deck
which contains an identity of a different faction.

In this paper, we consider a deck for Netrunner to be a
multiset, where no item can appear in a set more than three
times. Each set also includes exactly one identity, which is
always visible to us (as this is a condition of beginning a
game of Netrunner), and also defines a portion of the multiset
rules.

IV. EXPERIMENTATION METHODS

A. Netrunner Deck Data

Experimentation data consisted of 6000 community made
decklists posted on a popular Netrunner community website 5

that allows users to collect and compare decklists. Some fil-
tered based on popularity was performed. Prediction accuracy
results are determined by direct comparison of the predicted
deck and the original deck and returning a percentage of the
cards that match.

Algorithm 1 GetPredictedDeck(...) for a1
1: function GETPREDICTEDDECK(Dobs, R, C, n)
2:
3: ##Initialise all cards with rule support
4: InitCardRuleCounts(Dobs, C, R)
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##For each card
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{n− |Dpred|, c.MaxCount}
17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)

B. Apriori Rule Generation

Rules were mined from data using the Apriori method
detailed in Agrawal & Srikant [9], with modifications as
detailed in sections below. This process generates a large
number of rules, which describe the relationship between
items in the analysed set. These rules are made up of one
or more antecedent items, and one consequent item. The

5http://netrunnerdb.com

antecedent items is a multiset of items which must be found
in any observed set in order for the rule to become active.
The consequent item is the item which results from rule
activation, and thus the item which will be added to the
predicted set. Our rules take the form {A,B,B,C,D} → E,
where A,B,B,C,D is the full set of antecedents, and E is
the consequent.

Each rule also has a support [16] value, which
states how many occurrences of the complete set of
antecedents and the consequent appear in the training
data, and is useful to describe the magnitude of the ef-
fect of the rule. Support is calculated by the formula
support(X → Y) = σ(X ∪ Y)/N [17], where (X → Y)
represents a rule, and N represents the total size of the data
set. Each rule also has a confidence value, which measures
the reliability of the rule. Confidence is calculated by the
formula confidence(X → Y) = σ(X ∪ Y)/σ(X).

The primary piece of evidence used to model an oppo-
nent’s deck will be the identity card, as it is always visible,
and also provides the constraints for deck construction in
the form of faction, side and influence. As other cards
are revealed through play, these can be added to the deck
with complete confidence. It is usual to have observed a
small number of opponent cards during the first turn of
play (we estimate 1-4 is usual), and as such we vary the
number of observed cards we randomly select to determine
the effectiveness of our technique upon different sized sets
of cards.

After rules were generated from the data, the set of 6000
decklists were tested using 30 fold cross-validation, with
each individual prediction being made based upon a set of
randomly selected cards from the decks. As these cards could
potentially be duplicates, for each test a minimum of two
unique cards are observed.

C. Apriori Prediction

1) Standard Apriori Prediction (a1): The standard Apriori
method of prediction is shown in algorithm 1, where Dobs

represents the observed known cards, n represents the size
of the observed deck, Dpred represents the predicted deck, R
represents the set of all generated rules, and C represents the
set of all Netrunner cards. In the first step of the algorithm we
set the rule counts of each card to 0, then we run through all
rules and determine if they are active for the set of cards
we have observed (Dobs). We then set Dpred to contain
Dobs, as our prediction will always include the cards we
have observed, and this makes further operations easier. We
sort all cards by their rulecount attribute, and then move
through them in decending order of c.rulecount until we
find sufficient cards to fill the remainder of Dpred.

2) Modifying for duplicate cards (a2): A notable error
performed by a1 is number of duplicates which appear in
the predicted decklists. As Netrunner decks can include up
to three copies of each card6, we attempt a technique that

6A few cards have specific rules which break this allow more copies or
restrict the number of duplicates, but the vast majority may only appear in
sets of 1-3

allows us to predict the number of copies of each item in the
predicted multiset. Without this modification, the a1 simply
adds the maximum number of each item until it cannot add
more, resulting in three copies of each card in the predicted
deck.

Algorithm 2 GetPredictedDeck(...) for a2
1: function GETPREDICTEDDECK(Dobs, R, C, n)
2:
3: ##Initialise all cards with rule support
4: InitCardRuleCounts(Dobs, C, R)
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##For each card
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{n− |Dpred|, c.Cardinality}
17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)

In order to modify this behaviour, we make a separate
calculation using the rule metadata to determine the number
of duplicates included in the original data. We then use
this information to include copies in the prediction. This
algorithm is very similar to algorithm 1 except that after a
card is selected, the rule metadata is averaged to determine
the number of duplicates to be included.

Therefore each run of GetPrediction a2(Dobs) adds 1-
3 cards to Dobs, and bans the included card from further
selection. This technique may appear arbitrary, but in the
case of duplication in a specific decklist, the nature of the
individual card is far more relevant than any patterns between
the card and other cards in that deck. For example, some
cards are so strong and usable in any deck that they almost
always appear in sets of 3, whereas others frequently appear
alone due to the narrow field of use or difficulty to fit into a
deck.

3) Prioritising by Influence (a3): A review of the all data
used here shows that 84% of decks in our dataset used all of
their influence, 92% used all except 1 point, and 95% used
all but 2. Considering that our data likely contains a large
number of casual decks, which likely accounts for those not
using all of the influence, this is indicative of how important
the concern of influence during deck construction.

In order to prioritise influence spends, we change the
method of deck prediction so that we first attempt to make
predictions which would spend all available influence (both
influence and non-influence cards still undergo the duplicate
procedure mentioned in section IV-C2 above.) This new
method is not shown in algorithm, as the only change is

a sorting C so that all of the rules with a resultant card
that will cost influence appear first, and this is restated later
in algorithm 4. Notation is as before, however in the set C
is sorted not only by rulecount, but also by a boolean that
represents whether including any given card in Dpred would
cost influence. This means that the first predictions made by
a3 will cost influence, and then when all the influence is
spent, only cards that do not cost influence will be added.

4) Using influence during Rule Generation (a4): Here, we
separate item sequences that were generated from influence
spend and non-influence spend. This allows us to separate
the item sets into two groups, one which represents cards
which players have spent influence on, and which represents
card sequences that were used “in-faction”. We can then
generate specific rules for influence and non-influence spend.
In the case that we had insufficient data, the prediction
reverted to using all generated rules. This method is shown
in algorithm 3. Notation is as before, however in addition
Rinf represents rules originally generated from influence
sets, and Rnoinf represents rules which are generated from
non-influence sets only. This algorithm is very similar to
algorithm 2 except that GetPrediction a4 uses only rules
generated from influence selections when selecting an card
that costs influence, and only rules generated from non-
influence selections when selecting a card that doesn’t cost
influence.

5) Rule Generation including duplicate cards (a5): We
also attempted to remove the calculation for duplicate cards
by allowing the rules to be constructed from duplicate items,
and thus we should be able to predict those duplicates with
more relevancy to the observed deck, rather than the general
attributes of the cards. This algorithm is identical to algorithm
a4, except that duplicates are calculated based on the number
of copies of each card seen in the generated rules rather than
our cardinality data. When a rule is determined to be active,
instead of checking rule metadata to determine the number of
cards to add to the predicted deck, we instead determine the
total number of the consequent item that already exist within
the predicted deck, and if the required number specified by
the rule already exist, we take no action. If the required
number is not yet in the deck, we add a single consequent
item. For example, if the rule {A,B,C} → B becomes
active, we check to see if 2 or more B are included in the
predicted deck. If so, we add nothing. If not, we add a single
B.

6) Prioritising by rulesize (a6): This modification at-
tempts to give priority to rules which contain more items, as
these rules will be less rarely active due to their specificity.
However, when these rules are active for an observed card
set, they will likely tell us more about the content of the deck
than smaller rules. This algorithm is identical to a4, except
that the rules are sorted by descending rule size, and then a4
is performed using the set of rules which are the largest size,
then descending through the rules until we have completed
the deck.

7) Making confident predictions (a7): This modification is
identical to a6, however when we predict a card, we add it to

Algorithm 3 GetPredictedDeck(...) for a4
1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C,
n)

2:
3: ##Initialise all cards with rule support (inf)
4: InitCardRuleCounts(Dobs, C, Rinf)
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##Spend influence first
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{b(maxinf − inf(Dpred))/c.infc, c.Cardinality}

17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)
20:
21: ##Initialise all cards with rule support (no inf)
22: InitCardRuleCounts(Dobs, C, Rnoinf)
23:
24: ##Then fill the deck with non-influence cards
25: for all c ∈ C do
26:
27: ##Take the required number of cards
28: k = min{n− |Dpred|, c.Cardinality}
29:
30: ##Add them to the predicted deck, if possible
31: Dpred.AppendMultiple(c,k)

the observed card set and check all rules again. So any card
we predict to appear in the deck, we assume we are correct
for the purposes of further predictions. This final version is
shown in algorithm 4.

V. RESULTS

All results for predictions are shown in figure 3. Use of
the mentioned techniques to generate deck predictions is
generally successful, completing decks with an accuracy of
up to 59% from viewing only 5 cards (roughly 8-10% of
the actual deck). However there are some general trends
which can be observed. Firstly, as each card (or set of
cards) are added to the deck sequentially, we don’t take into
account new patterns which may emerge between originally
observed cards and cards more recently added. This means
that all predictions are based on the original set of observed
cards, whereas we would likely have a different effect on
prediction if we considered predicted cards to be part of the
observed set when making further predictions. We suggest
that some of the difference in prediction may be a tendency to
form into familiar deck archetypes, as predicted cards would
likely support larger patterns already recognised as frequently

Algorithm 4 GetPredictedDeck(...) for a7
1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C, n)
2: Dpred ← Dobs

3: for all r ∈ Rinf do
4:
5: ##Initialise all cards with inf rule support
6: InitCardRuleCounts(Dpred, C, Rinf)
7:
8: ##Sort cards desc by rule support
9: sort(C, rulecount, 0)

10:
11: ##Spend influence first
12: for all c ∈ C do
13:
14: ##Take the required number of cards
15: k = min{b(maxinf − inf(Dpred))/c.infc, c.Cardinality}

16:
17: ##Add them to the predicted deck, if possible
18: Dpred.AppendMultiple(c,k)
19: for all r ∈ Rnoinf do
20:
21: ##Initialise all cards with non-inf rule support
22: InitCardRuleCounts(Dpred, C, Rnoninf)
23:
24: ##Sort cards desc by rule support
25: sort(C, rulecount, 0)
26:
27: ##Fill out deck with non-influence
28: for all c ∈ C do
29:
30: ##Take the required number of cards
31: k = min{n− |Dpred|, c.Cardinality}
32:
33: ##Add them to the predicted deck, if possible
34: Dpred.AppendMultiple(c,k)
35: return Dpred

played decks. This is somewhat consistent with human deck
construction however, as players often use existing archetypes
to construct decks.

In order to provide a control for experimentation, random
selection was tested (a0). Generated decks were still required
to observe deck construction rules, but other than that cards
were selected randomly from the set of available cards. All
predictions using a0 had an accuracy in the range 0% - 6%,
and due to this low accuracy, results are not shown below.

We also attempted to test prediction across a range of
different numbers of observed cards. In each of these cases,
the identity card was always observed, then an additional
number of cards were added. This means in the case of the
number of observed cards being zero, only the identity card
was observed. In all previous experiments the size of the set
has been five, which represents what a player might expect
from two complete turns of play. We tested prediction with
sets of up to ten viewed cards. We also tested prediction
with a set of zero observed cards, which represents the game

before play has begun.

A. Default Apriori (a1)

Default Apriori allows for predictions of up to 48% accu-
racy, and while this is somewhat effective, it can be improved
upon significantly by the later algorithms which incorporate
heuristic knowledge. Different values of minimum support
were used to determine the optimum value, which lies close
to 15. All of these tests were run on a dataset of size 200
(30-fold cross-validation on a total set of size 6000), so larger
values of minimum support will likely cause smaller detail
of the dataset to be lost during rule generation. Examination
of the decks generated with a1 also reveals that almost every
card is included in triplets, further speaking of the neces-
sity of a modification to address the number of duplicates
included.

B. Apriori with duplicates (a2)

The modification to consider inclusion of duplicates in the
predicted deck results in a significant increase in accuracy.
The most significant value of minimum support now appears
between 10-15, both options resulting in a prediction accu-
racy of 53%, an increase in accuracy of 5%. This increase
in accuracy is certainly related to more accurate predictions
on sets of duplicate cards, as due to the nature of the game,
certain cards are more often played in sets of 2 or 3, and
certain cards are almost always played without duplicates.
This modification largely makes the effect that there are no
longer automatic inclusions of cards in groups of 3, however
it can still be further improved with respect to heuristic data.

C. Apriori with Influence Priority (a3)

While prioritising the inclusion of cards which cost influ-
ence has a positive effect, the effect is marginal, increasing
prediction accuracy by less than ∼2% at the optimal value
of minimum support 10. It is surprising that the effect is so
marginal, but upon examining further it is apparent that most
(92%) of decks predicted with a1 and a2 already include
the maximum permitted influence for those decks, so the
modification is perhaps not as important to prediction as
originally proposed.

Examinations of the individual card selections shows that
the influence spends are somewhat inappropriate however,
and are somewhat to blame for the inaccuracies of this
prediction algorithm.

D. Apriori with Influence Filtering (a4)

There are several interesting effects in these results. Firstly,
the highest accuracy has risen to 57%, an increase of ∼4%.
Secondly, the optimal value of minimum support has changed
to a higher value of 20.

A review of the cards selected by influence spends reveals
that they are much more appropriate to the acknowledged
deck archetypes, presumably due to the specific use of rules
generated entirely from influence spend patterns.

We also start to observe some occasional single-card influ-
ence inclusions which are well established in the appropriate
archetypes.

E. Rule Generation including duplicate cards (a5)

We can see from the results for a5 that attempting to
determine the number of duplicate cards in a deck from
generated rules appears to be less effective than using our
data on the normal set count of that card. This is believable,
as the number of duplicate cards included is likely to be
much more dependent on the nature of the card than on
the nature of the deck itself. As our information relates to
patterns between cards, we don’t necessarily have a good
understanding of the nature of the card itself.

It is worth noting however that for some values of mini-
mum support, a5 is approximately as effective as a3 and a2,
meaning that it is still an effective technique, and alternative
methods to predict duplicate cards in the deck could be
investigated.

F. Prioritising by rulesize (a6)

Giving priority to larger rules has also had a positive effect
on prediction accuracy. We can see this effect particularly
when minimum support is 20. We attribute this effect to
larger rules being more rarely satisfied unless they are
highly informative about the configuration of decks. As such,
activated large rules should be given priority over activated
smaller rules.

G. Making confident predictions (a7)

By adding all predictions to our observed set, we are
assuming that all our predictions are correct, and biasing
future predictions by this information. This has a positive
effect on prediction accuracy at higher values of minimum
support, however it has almost no effect at values of 15 and
below. This could be explained by some subtly of rules that
are activated with a support of 15 or less, however in this
case we would expect the prediction accuracy to be positively
affected also, and yet we see that this is not the case.

The extension of our observed set also has another less
obvious effect on prediction, which is that it allows activation
of rules with larger item sequences, as more items appear
in the observed set. This means as Dobs expands, we may
observe decks activating larger rules, and effectively falling
into archetypes.

H. Varied Size Observation Set

The results for predictions made with varied observation
sets are shown in figure 1. We can see that the overall change
in deck prediction accuracy across the total range of tested
values is approximately 20%, which while a large change,
might be less than we expect from such a change in source
data. This illustrates the importance of the identity card which
is always viewed, it speaks deeply of the construction of
the deck, mostly because the identity card is always active
during play, and a substantial portion of the cards included
will have some synergy with that identity. This also speaks of
the nature of deck construction in Netrunner, which largely
consists of modifications to existing archetypes, likely due to
smaller synergies between groups of cards. It is also worth
noting that at almost all values of observed set size and

minimum support, our algorithms which incorporate heuristic
information perform significantly better than default apriori.

We see an understandable increase in prediction accuracy
as we increase the size of the observed set, as there are
both fewer cards to predict, and also more information is
available on the set content. Rules with a higher number of
antecedents are also activated, which likely provides more
accurate information on the set content.

Fig. 1. Varied Size Observation Set

We can also observe that a few of our own techniques
(a3&a4) perform very poorly when the observed set is very
small or empty. As a3 and a4 both focus on influence
inclusions, this is likely due to a lack of corroborating
information from other observed cards to distinguish correct
influence selections. As such, the initial influence selections
are almost unguided, and as these cards are selected from a
much larger set of available cards than regular selections, the
picks are more likely to be incorrect without guidance.

There is also an interesting plateau in prediction accuracy
around set size 3-6 with algorithm a5. This is likely due to the
estimation for duplicate cards struggling on smaller set size.
As the cards in the observed section of the deck are selected
randomly during each test, it is possible that duplicate cards
are selected, and as such less information is exposed in
certain cases. This might cause a decrease in accuracy when
only a small number of unique cards are observed. This
calculation is not included in any other algorithm, as it was
not effective in increasing accuracy overall, possibly due to
this complication.

The results across all experiments grouped by algorithm
are shown in figure 2. We can more clearly see a general
rise in prediction accuracy here, with the exception of the
a5 algorithm for reasons mentioned above. This is to be
expected, as each algorithm following a1 includes specific
heuristic improvements which are targeted to improve effi-
ciency in this specific domain.

Algorithm a5 shows that our introduction of rule-based
cardinality estimations have been unsuccessful in improving
prediction efficiency, although this is something we would
definitely want to address in future. The current cardinality
estimations are unlikely to predict decks with 100% accuracy,
for example it will always fail to predict decks that include
a unusually small number of a card almost always seen in

sets of 3.

Fig. 2. Cumulative results by Algorithm

VI. CONCLUSIONS & FURTHER WORK

It can be seen that our modifications to the Apriori
technique provide a significant improvement to prediction
of decks in Netrunner, showing a maximum improvement
of ∼13% between the default apriori algorithm (a1) and our
optimal modified algorithm (a7).

There are several other opportunities for future work
which could be explored. For example, the technique used to
separate rules in a4 could also be applied to identity cards,
using only rules generated for each identity to select either
the entire deck, or the influence-spend portion of the deck.
However this would require a large amount of data, as certain
identities are unpopular and may appear only rarely within
our current data set, so there would be fewer useful rules
generated for these identities. It may also be worth looking
at generation by Faction, which might yield more interesting
results. Also, as our observed cards were randomly selected,
they may not adequately represent the real order cards are
observed during a game (as it is more common to play certain
cards earlier than others.) Biasing generation of the observed
set of card may provide a more realistic scenario.

Our attempts to adequately predict the number of duplicate
cards within a deck have been some what effective, but
there is still work to be done here, as our best prediction is
based on our heuristic knowledge of the specific card, rather
than knowledge of the card in context. Successfully adding
contextual heuristic knowledge into this process will surely
lead to more accurate prediction.

We can also look to applying these techniques to other
domains, specifically the games mentioned in section 1.
Magic the Gathering has a much larger set of active cards,
and less stringent deck construction rules, so while this
would represent a more challenging target, there is also
a much larger amount of data available due to the larger
player community and history of the game. Hearthstone likely
represents a point of medium complexity, as the card pool is
between the other two games mentioned here (approximately
450), and the deck construction rules are more restrictive than
Magic, and thus provide more guidance.

A further avenue of research which could be pursue is
that of pattern matching within the decks, in order to draw
out common patterns which occur within multiple decks, and
then using that information to further bias the prediction.

ACKNOWLEDGEMENTS

The work displayed here was supported by EPSRC (http://
www.epsrc.ac.uk/), the LSCITS program at the University of
York (http://lscits.cs.bris.ac.uk/), the NEMOG program at the
University of York (http://www.nemog.org/), and Stainless
Games Ltd (http://www.stainlessgames.com/).

REFERENCES

[1] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings,
and C. Rayner, “Bayes’ Bluff: Opponent Modelling in Poker,” in
Proceedings of the TwentyFirst Conference on Uncertaintyin Artificial
Intelligence UAI, 2005, pp. 550–558.

[2] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot, “Integrating Oppo-
nent Models with Monte-Carlo Tree Search in Poker,” in Proc. Conf.
Assoc. Adv. Artif. Intell.: Inter. Decis. Theory Game Theory Workshop,
no. February, 2010, pp. 37–42.

[3] C. Bauckhage, C. Thurau, and G. Sagerer, “Learning human-like
opponent behavior for interactive computer games,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 2781, pp.
148–155, 2003. [Online]. Available: http://www.cs.berkeley.edu/daf/
games/webpage/AIpapers/Bauckhage2003-LHL.pdf

[4] C. Bursztein and E. Bursztein, “I am a legend: Hacking
Hearthstone with machine learning,” in DEFCON 22,
2014, p. 169. [Online]. Available: https://cdn.elie.net/talks/
I-am-a-legend-defcon-22-slides-final.pdf

[5] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Record,
vol. 22, no. May, pp. 207–216, 1993.

[6] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for
building intrusion detection models,” in Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on, 1999, pp. 120–132.

[7] J. Srivastava, R. Cooley, M. Deshpande, and P.-n. Tan, “Web usage
mining: discovery and applications of usage patterns from Web data,”
vol. 1, no. 2, pp. 12–23, 2000.

[8] C. Creighton and S. Hanash, “BIOINFORMATICS Mining gene ex-
pression databases for association rules,” pp. 79–86, 2003.

[9] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” Proceeding VLDB ’94 Proceedings of the 20th International
Conference on Very Large Data Bases, vol. 1215, pp. 487–499, 1994.

[10] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for association
rule mining — a general survey and comparison,” ACM SIGKDD
Explorations Newsletter, vol. 2, no. 1, pp. 58–64, 2000.

[11] S. C. Ngan, T. Lam, R. C. W. Wong, and A. W. C. Fu,
“Mining N-most interesting itemsets without support threshold by
the COFI-tree,” International Journal of Business Intelligence and
Data Mining, vol. 1, no. 1, p. 88, 2005. [Online]. Available:
http://www.inderscience.com/link.php?id=7320

[12] A. W. C. Fu, R. W.-w. Kwong, and J. Tang, “Mining N-most Interesting
Itemsets,” in Proceedings of the 12th International Symposium on
Methodologies for Intelligent Systems (ISMIS),, 2000.

[13] Z. Hu, W. Chin, and M. Takeichi, “Calculating a new data mining
algorithm for market basket analysis,” Practical aspects of declarative
languages: second International Workshop, PADL 2000, Boston, MA,
USA, January 17-18, 2000: proceedings, pp. 169–185, 2000.

[14] J. Hipp, A. Myka, R. Wirth, and U. Guntzer, “A New Algorithm for
Faster Mining of Generalized Association Rules,” in Principles of Data
Mining and Knowledge Discovery, 2006, pp. 74–82.

[15] S. C. Duncan, “Mandatory Upgrades: The Evolving Mechanics and
Theme of Android: Netrunner,” in Well Played Summit, 2014.

[16] V. Baez-Monroy and S. O’Keefe, “An Associative Memory for Asso-
ciation Rule Mining,” 2007 International Joint Conference on Neural
Networks, no. 2, pp. 2227–2232, 2007.

[17] P.-N. Tan, M. Steinbach, and V. Kumar, “Association Analysis: Basic
Concepts and Algorithms,” Introduction to Data mining, pp. 327–414,
2005. [Online]. Available: http://www-users.cs.umn.edu/{∼}kumar/
dmbook/index.php

Fig. 3. Results of algorithm runs with varying minimum support values

