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Abstract—Esports have become major international sports
with hundreds of millions of spectators. Esports games generate
massive amounts of telemetry data. Using these to predict the out-
come of esports matches has received considerable attention, but
micro-predictions, which seek to predict events inside a match,
is as yet unknown territory. Micro-predictions are however of
perennial interest across esports commentators and audience,
because they provide the ability to observe events that might
otherwise be missed: esports games are highly complex with
fast-moving action where the balance of a game can change in
the span of seconds, and where events can happen in multiple
areas of the playing field at the same time. Such events can
happen rapidly, and it is easy for commentators and viewers
alike to miss an event and only observe the following impact of
events. In Dota 2, a player hero being killed by the opposing
team is a key event of interest to commentators and audience.
We present a deep learning network with shared weights which
provides accurate death predictions within a five-second window.
The network is trained on a vast selection of Dota 2 gameplay
features and professional/semi-professional level match dataset.
Even though death events are rare within a game (1% of the
data), the model achieves 0.377 precision with 0.725 recall on test
data when prompted to predict which of any of the 10 players of
either team will die within 5 seconds. An example of the system
applied to a Dota 2 match is presented. This model enables real-
time micro-predictions of kills in Dota 2, one of the most played
esports titles in the world, giving commentators and viewers time
to move their attention to these key events.

Index Terms—Esports, Dota 2, Deep Learning, Micro Predic-
tion

I. INTRODUCTION

The term esports describes video games that are played
competitively and usually watched by large audiences [1].
Superdata [2] predict 330 million esports spectators by 2019.
Esports have become an important research field across
academia and industry [3] due to the availability of high-
dimensional, high-volume data from virtually every match.
This has introduced the field of esports analytics: “the process
of using esports related data, [...], to find meaningful patterns
and trends in said data, and the communication of these
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patterns using visualization techniques to assist with decision-
making processes” [3]. This definition highlights a fundamen-
tal challenge in esports: making the matches comprehensible
to the audience. Many esports are complex and fast-paced,
making it hard to fully unpack the live action with the naked
eye.

Esports analytics has to a significant extent focused on the
Multi-player Online Battle Arena (MOBA) genre [3]. As a
typical MOBA, Dota 2 by Valve Corp. is a 10 player game
with two teams of five players (taking typically between 30-
40 minutes [4]). Dota 2 is a very complex game where each
player selects one of many unique ’heroes’ to play. Each player
uses their hero’s spells and abilities coupled with items they
purchase in-game to gather resources across the 3-lane map.
The heroes play different roles where they aim to generate
resources via fights against the rival team to progress through
hero levels and become more powerful. Each team’s ultimate
aim is to destroy the opposing team’s base. There are multiple
strategies and winning a game requires coordination within
the team and the ability to react to the opposition’s tactics and
behavior. The game is real-time with hidden information and
has deep strategic gameplay.

During a Dota 2 game, the players must closely monitor
their hero’s status, in particular, the likelihood of dying. Thus,
a method of predicting deaths within a game of Dota 2 can be
beneficial on multiple levels of both professional and amateur
game analysis. In current esports analytics approaches, many
of the performance metrics (data variables) used are correlated
directly to team success rather than necessarily to a player’s
likelihood to die. In particular, in Section V, we show that
the hero health variable which may seem an obvious indicator
of likelihood to die is not correlated to hero deaths. Some
heroes have abilities which allow them to heal themselves
or their team-mates while heroes can purchase items in-game
that allow them to heal or teleport away from danger. Hence,
we cannot simply use player health for predicting deaths as
the prediction is complex and requires careful investigation.
For the performance of players and heroes to be accurately
analysed, the historical data needs to be carefully considered
and tailored to the specific task. Applying performance metrics
without careful selection introduces noise and leads to biased
or skewed analyses.
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This paper introduces the first step towards the larger
challenge of micro-predictions in esports. Micro-predictions
are granular predictions about what might happen in the near
future in the game, as opposed to predicting the outcome of
the match itself. The concept is known from other sports, e.g.
predicting which football player that will score the next goal.
Understanding the likelihood of dying in the near future can be
vital in determining what tactics a player should use within
post-game analysis. The use of a prediction tool within the
professional game broadcast scene would provide far more
readability for the audience on why and how players are
making mistakes and what tactics they should use individually
and as a team, allowing commentators to simplify complex
build ups to when a player dies. Live broadcasts would benefit
from feeding this information back to the audience, alongside
automated camera movement to direct the focus when these
predictions occur to a high enough degree of accuracy, making
both the commentator’s job and the users’ viewing experience
a far smoother process. Furthermore, post-game data analysis
forms a large part of professional esport players’ training
schedule [5]. Coaches currently have to select (by hand) points
of the game that led to deaths or where a team’s advantage
snowballed. With access to our tool, automated points could
be created where the model would predict a player’s death,
whether they did die or not allowing a further investigation as
to why the model assumed they were in danger. We introduce
a novel prediction framework using a shared memory neural
network (described in Section IV) and analyse a much larger
set of in-game features compared to previous esports work.

The experimental design behind this paper was to train
a neural network model to predict whether a hero will die
in the next 5 seconds. A 5-second window provides a large
enough period before a kill occurs, such that commentators
would be able to make use of any prediction information the
network provides. We ran preliminary experiments exploring
larger window sizes from 5 seconds up to 20 seconds, with
the precision of the model drastically dropping as the window
size increased.

There are certain immediate limitations, being that every
data point is required, even that of unseen hero data. With
this in mind, the tool would be limited to post-game analyses,
or in a developer/broadcaster environment where the required
variables can be obtained (an extension of a professional game
broadcast for example). Another limitation is that the game is
constantly changing, meaning our model might not generalize
well to newer game versions.

The structure of the paper is as follows; Related work
will be discussed in Section II. Followed by an in-depth
analysis of the data set, including the cleaning and feature
selection based on domain knowledge in Section III. In Sec-
tion IV we then explore the neural network model used, from
dealing with the imbalance data, to in-depth hyperparameter
exploration. We then summarise results of the fully trained
model and how it applies to the test data and a selected
Dota 2 match in real time in Section V. Section VI dis-
cusses the difficulties of performance elevation. We provide

concluding remarks in Section VII. The source code used
for creating the dataset and training the model is available
at https://github.com/adam-katona/dota2 death prediction.

II. RELATED WORK

Collectively, the esports industry is generating knowledge at
a rapidly increasing pace. However, much of this knowledge
is not publicly available due to commercial confidentiality,
so establishing the state-of-the-art in esports is challenging.
Research into esports has previously been published across a
number of different disciplines, these include; AI, analytics,
psychology, education, visualization, ethnography, marketing,
management and business (e.g. [1], [3], [6]–[9]).

Within esports, “esports analytics” is generally used to
denote business intelligence work centred on esports, i.e., the
analysis of data such as behavioural telemetry, sales data,
etc.. These analyses occur across the range of disciplines
and describe a broad area of work. Our work focuses on the
analysis of behavioural telemetry data from esports games.

The majority of academic work in this specific area has
focused on building machine learning models to predict the
outcome of esports matches or other prediction tasks [7], [9]–
[15]. Other work includes Schubert et al. [3], who described a
method for detecting spatio-temporally bounded team encoun-
ters in Dota 2. Summerville et al. [16] used machine learning
to predict draft picks in Dota 2. Rioult [17] discussed some of
the general applications of mining player tracks from esports
games. Drachen et al. [18] used classification for studying the
movement patterns of Dota 2 teams across skill levels. Gao et
al. [19] classified Dota 2 heroes based on performance metrics.
Eggert et al. [20] used logistic regression to classify players
into pre-determined roles using performance metrics.

The most closely related work is Cleghern et al. [21] who
predicted hero health in Dota 2 using a combination of tech-
niques: an auto-regressive moving average model to predict
small changes in health and a statistical estimation model
(see [21]) which predicts large changes in health and works in
conjunction with logistic and linear regression that predict the
sign and magnitude of that change respectively. The authors
note a peak accuracy of 77.2% for the ARMA model to predict
small changes in health (less than 100 points) five seconds
into the future. The statistical estimation model predicts large
health changes 10 seconds into the future. However, the model
has poor performance in terms of predicting the points of
major health changes, although when it does find them, the
accuracy is around 80% for the direction and magnitude of
the health change. The models of Cleghern et al. [21] only
use health data, unlike the present work which uses a large
number of features. Furthermore, their dataset comprises just
542 matches, and the level of the matches is not described in
the paper, so it is unknown whether the results would work
for professional matches and/or amateur levels.

In summary, while much previous work focuses on macro-
predictions (predicting the winning team), there has been a
small amount of work on micro-level events like encounters
and hero health changes [3], [17], [18], [20], [21] but only
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one previous work has focused on in-game forecasting with
mixed success. None of the existing work has focused on
professional/semi-professional levels or predicted hero deaths.
Death events are an important part of the game narrative and
equally important for broadcasters’ commentaries, spectators’
understanding of the game state and players’ tactics and anal-
yses. From the state-of-the-art, we can further conclude that
esports analytics is complex, requires careful consideration of
the data and models used and, frequently, no one technique
excels.

III. DATASET

Access to large amounts of data is required in order to
successfully train a classification model to predict kills. To
generate this we use Dota 2 replay files; these are binary files
produced by Valve Corp. for every Dota 2 match played.

They contain all low-level game events from the match.
They are a comprehensive representation of the matches and
are used by Dota 2 engines to recreate entire matches for re-
watching and analysis, so are an ideal source of data to train
our models. We explain how we obtain these data and describe
the format in Section III-A and III-B, respectively.

A. Data collection

To allow us to access the replay files, we need the URL of
each file. OpenDota [22] provides an API for accessing Dota
2 replay URLs that then allows us to download matches from
Valve’s servers. We collected the last 5000 Professional (major
tournaments) and 5000 Semi-Professional (minor tournaments
and leagues) games that were played prior to the 5th of
December 2018. Accounting for errors in downloaded game
data, this resulted in a total collection of 9883 matches. To
extract the data from the binary files, we used the open source
parser Clarity [23]. Clarity provides functions to traverse the
game object hierarchy and to access the attributes of game
objects.

To turn the replay into a time-series, we recorded values
of a set of attributes (see next section for details) with a
given sampling period. Neighboring data points are highly
correlated, thus lowering the sampling period results in more
data with less diversity. To get most out of our replay files
while keeping the size of the dataset manageable, we chose the
sampling period to be 4 game ticks, which correspond to 0.133
seconds in game time. To calculate the exact time of death we
used the full resolution data however, which resulted in more
accurate classification labels. There were some missing key
feature values within a number of replay files, for example,
the attributes about hero statistics. After discarding these files
7311 replay files remained. To the best of our knowledge, there
was no bias introduced by discarding these files.

B. Data processing

The data processing stage included cleaning, creating addi-
tional features, calculating labels and normalization.

In order to keep the time series data consistent in the game,
we removed all ticks that occurred during a pause in the game.

In a Dota2 game, a pause can be initiated by any player, this
occurs when technical faults happen within the game, giving
referees a chance to fix any issues. Since predicting death
during a paused game is trivial, any pause data points were
removed from the dataset.

Due to the nature of the predictions we are trying to achieve,
i.e. death prediction, we needed to build a feature set that
would capture the relevant data. We began by looking at the
two most important factors that result in a player’s death,
relative strength of the heroes and their current location on the
map at a given time. Building from an initially small number
of features to represent this we ended with a final feature
set of 287 features per hero. Some of these features were the
values of game object attributes like hero health. Other features
were derived values like proximity to other players. Below an
overview is given for each category of features, and why they
were included. Further details are contained in Table I. Due to
the number of features and the page limit, a full description
of each feature is not given, but is available on request by
contacting the first author.

• Time (1 feature): The game time might be a useful feature
for two reasons. One is that there are events which happen
on given times (creature spawns), the other is that as
time progresses, the players generally get more powerful,
which results in the players pursuing different objectives.
This gameplay change is often referred to as transitioning
from early-game to mid-game and then late-game.

• Current state of the hero (21 features): Includes attributes
like health, strength, agility, etc. Full list in Table I.

• Statistics about the hero (17 features): Describes what
the hero did in the past. For example the number of kills,
deaths, last hits, experience points etc. Full list in Table
I.

• Activatable items (34 features): Players can buy items
which can be activated to provide a powerful effect. These
items can have a drastic effect on the outcome of an
encounter, for example, they can make the player teleport
away from danger. Each item has a binary feature value
representing whether the player has the item or not, and a
cooldown feature, which represents the time until it can
be activated again. To keep the feature space low, the
17 most powerful items were selected based on expert
opinion. A full list is given in Table I

• Hero abilities (48 features): Include the attributes of hero
abilities like cooldown, level, mana cost, etc. (full list in
Table I). For heroes with fewer than eight abilities, values
are zero padded.

• Hero ID (130 features): The identity of the hero is
represented as a one hot encoded vector. This feature
provides useful information since different heroes have
different strengths and weaknesses. However, since the
number of heroes is high, this represents a significant
portion of the feature space.

• Hero position, position change (4 features). The position
is represented as x and y coordinates.



TABLE I: Details of different categories of features.

Hero statistics Hero state Positions / Proximities Ability Items list

FirstBloodClaimed
TeamFightParticipation
Level
Kills
Deaths
Assists
ObserverWardsPlaced
SentryWardsPlaced
CreepsStacked
CampsStacked
RunePickups
TowerKills
RoshanKills
TotalEarnedGold
LastHitCount
TotalEarnedXP
Stuns

Agility
AgilityTotal
Intellect
IntellectTotal
Strength
StrengthTotal
MagicalResistanceValue
PhysicalArmorValue
Mana
MaxMana
TauntCooldown
BKBChargesUsed
AbilityPoints
PrimaryAttribute
MoveSpeed
Health
MaxHealth
DamageMax
DamageMin
lifeState
TaggedAsVisibleByTeam

Hero position x
Hero position x change
Hero position y
Hero position y change
Ally proximity 1-4
Ally proximity 1-4 change
Enemy proximity 1-5
Enemy proximity 1-5 change
Closest ally tower proximity
Closest ally tower proximity change
Closest enemy tower proximity
Closest enemy tower proximity change

Level
CastRange
ManaCost
Cooldown
Activated
ToggleState

Blink dagger
Black king bar
Magic wand
Quelling blade
Power treads
Hand of midas
Hurricane pike
Force staff
Abyssal blade
Mask of madness
Nullifier
Travel boots
Dagon 5
Lotus orb
Tpscroll
Smoke of deceit
Clarity

• Hero proximity, proximity change (18 features): Repre-
sent the distance between the current player to every other
player, and the rate of change of the distances.

• Distance to closest alive enemy and ally tower, and
distance change (4 features): Towers are destroyable
structures which can deal a large amount of damage.

• Visibility history (10 features): Binary features represent-
ing whether the player was visible for the enemy team in
the past 10 seconds with 1-second resolution.

The game is fully observable, the replay file contains the
whole game state. At first glance adding features depending
on the past might seem unnecessary. However an important
part of the system are the players, and the behavior of the
players does depend on the past. For example, if an enemy
just went out of sight, the player still knows that the enemy
is in the area. On the other hand, if the enemy disappeared
minutes ago, that enemy can be anywhere from the player’s
perspective. This was our motivation for adding the visibility
history features.

Even though a lot of information is present in these features,
there is still important information missing which a human ob-
server pays attention to. For example, there is no information
about projectiles or non-player creatures.

The classification label is a binary number representing
whether or not the player will die within 5 seconds.

Normalizing the features was done across players. For each
feature, we calculated the maximum and minimum values that
any player had in any match, and used these values to scale
the features to the range between zero and one.

IV. THE MODEL

We used a deep, feedforward neural network with weight
sharing as our model [24], [25]. The input of the neural
network consists of the features (discussed in the III-B) for
each hero. In the largest feature set, a hero has 287 features and
there are 10 heroes so the whole network has 2870 inputs. The
network has 10 independent continuous outputs representing

the probability of each player dying in the next 5 seconds. In
this section, we first discuss weight sharing and our network
architecture. Then we present our methods for data balancing,
the training procedure and the hyperparameter exploration.

A. Weight sharing
Weight sharing can drastically reduce the number of weights

of a network without sacrificing much of the representational
power [25]. This can be achieved by using the inherent
symmetries of the domain. In our case, the symmetry comes
from all heroes having exactly the same kind of features,
and the hero slot order being irrelevant to the gameplay.
Weight sharing has been applied to various domains; from
image [26] and audio [27] classification to natural language
processing [28]. One of the most successful and best-known
example of weight sharing is the convolutional neural net-
work [26]. In the case of image recognition, the goal is to
learn positional invariant representations, since we want to
recognize objects which can be anywhere in the image. In
the prediction problem discussed within this paper, we want
to learn hero slot invariant representations.

B. Network architecture
Fig. 1 shows a brief abstract overview of the network

structure, though the number of layers and depth of the
network were not shown. Instead, these values can be seen
within Table II, which also shows the hyperparameters of
the network. The main takeaway from the network Fig. 1,
visualises how the inputs entered into the shared network
structure.

Here all the weights are shared, essentially creating a sub-
network that learns a new, denser representation for the hero
features. The concatenation layer appends the outputs from
each shared layer creating a tensor of inputs to the last part
of the network structure, which is a fully-connected network.

Rectified linear unit (RELU) [24] was used for the output of
every hidden layer, while we used the Sigmoid function [24]
for the final activation of the network.
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Fig. 1: Overview of the network architecture. The features from each hero flow through the shared layers, which calculate the
same representation for each hero. These representations are concatenated to one big vector, which is passed to a standard fully
connected network. The network has 10 outputs, each corresponding to the probability of each hero dying within 5 seconds.

C. Dealing with imbalanced data

The original data-set in its continuous form is extremely in-
balanced. Since most of the time during a match the players
are not about to die there are a significant amount more points
for training on ”no death” labels, with only around 1 % of the
classification data being positive ”death” labels. To balance the
training data, we utilised under sampling [29] on the negative
labels. This process was split into two steps;

After parsing the replays files into their readable continuous
format, we randomly discarded around 50% of the negative
labels from the data set (where no player died for at least
5 seconds). This saved us a considerable amount of storage
space, and made loading the dataset far faster.

The second step of balancing the data took place when
we assembled our minibatch for gradient descent [24]. Since
when someone dies, others do not necessarily die around the
same time it is not possible to get batches where the labels
are balanced for each player. Instead, we balanced the batch
for only one player. At each iteration, a player was selected
randomly and the dataset was sampled in a way that the
number of negative and positive labels were equal for this
player. Then we only backpropagated the error for the selected
player.

D. Feature sets

Because of the complexity of the game, we were not sure
if the network can make use of all the feature categories. To
gain insight we created three separate feature sets, and run
three training procedure with three separate hyperparameter
searches.

• The minimal feature set (15 features per hero) only
contains the current health, total gold, position, and the
hero and tower proximity features. We selected these
features because we think these are the most informative.
The total gold describes how powerful the hero is, while
the proximities describe who is in range to attack or help
the hero.

• The medium feature set (109 features per hero) contains
everything except for the hero ID and the abilities fea-
tures. These two feature categories occupy more than
60% of the feature space. While a powerful ability can

change the tide of the battle, making use of these features
is difficult, since there are over four hundred unique
abilities in the game.

• The large feature set contains all features (287 features
per hero).

E. Training the Network

The data set was divided prior to training into an 80%/10%
training and validation split, with 10% left over for testing.
The training set consisting of 5848 matches, and the validation
set consisting of 732 matches. After applying label balancing,
the training set contained 57.6 million datapoints, while the
validation set contained 7.2 million datapoints. 9.2% of the
labels were positive.

The trained network was evaluated on the test set containing
731 matches. There was no label balancing applied to the test
set, such that the data remained a continuous match of data
points representing the real distribution of data. The test data
consisted of 14 million data points, 1.04% percent of the labels
were positive.

Due to the sheer amount of data, it was impossible to
load the entire data set into memory. Therefore the data was
shuffled and saved into small files each containing 4000 data
points. This resulted in roughly 16,200 files for the entire data
set. For each training iteration, a batch of 128 data points was
assembled from a random file.

For each feature set, we used a random search [30] based
exploration to determine the best parameters to use for the
following; the number of layers, number of neurons per layer,
learning rate and batch size. A detailed description of the
determined hyperparameters can be seen in Table II.

V. RESULTS

Due to kills occurring rarely within a Dota 2 match, the
ratio of positive labels in the test data is around 1%. In
such imbalanced data, accuracy is not a good measure of
performance. Instead, we used the precision-recall curve, and
the average precision, which is the area under the precision-
recall curve.

Table III shows the performance of the best model on
the test set for each feature set. The results indicate that



TABLE II: Hyperparameters for each feature set. The architecture is given by lists, where the length of the lists are the number
of layers, and the values are the number of neurons in each layer. See Fig. 1 for an explanation of shared and final layers.

Hyperparameter Minimal Features Medium Features All Features

Learning rate 3.06 e-5 7.48 e-5 6.15 e-5
Shared layers [200, 100, 60, 20] [256, 128, 64] [256, 128, 64]
Final layers [150, 75] [1024, 512, 256, 128, 64, 32] [1024, 512, 256, 128, 64, 32]
Batch Size 128 128 128
Optimizer Adam Adam Adam

Fig. 2: Distribution of predictions for data points with different
time until the player dies on the test data. The red line
represents the median. The network is trained to predict
whether a player will die within 5 seconds.

Fig. 3: Precision-Recall curve for the most accurate model,
run against the entire test set.

TABLE III: Average precision (Area under the Precision-
Recall curve) for feature sets for most accurate model.

Feature Set Average Precision

Minimal 0.5001
Medium 0.5365
All 0.5447

the network is able to make use of the extra features. The
performance advantage of the medium feature set to the
minimal one is substantial. The advantage of the largest feature
set over the medium one is more subtle.

The best performing model achieved an average precision of
0.5447. We used this model for further analysis. The precision-
recall curve of this model is shown in Fig. 3. On the test data,
a few of the highest predicted probability were actually false
positives. These outliers are creating a narrow drop at the
beginning of the precision-recall curve. The precision-recall
shows the dilemma between choosing a high threshold with
high precision, and low recall, or choosing a low threshold
with low precision and high recall. For example, at the
threshold of 0.9 the model has 0.377 precision with 0.725
recall. By passing data in a continuous manner from a match
we can construct a graph of prediction points on our test
matches over the course of the entire match file. An example
of a typical game predictions graph can be seen in Fig. 4a,
in which we plot the actual labels of kills (K) from a game
against the prediction output of the model. This can visualize
how many true positives and false positives occur.

It is also worth noting that even though we are testing for
kills before 5 seconds, on some occasions kills would still
be predicted before the 5-second mark, though to reduce any
confusion in the calculations these would still be counted as
mispredictions. Therefore if this tool would be used in a live
game the accuracy of predictions could be higher than what is
reported in this section. This is further discussed in Section VI.
A generalised overview of prediction times from both the
trained 0-5 seconds and an extended window to 20 seconds,
and their probability outputs can be seen in Fig 2

To disprove any notion that the network relied heavily on
certain feature correlations with death, we chose to analyse
the feature of each player’s health relevant to the prediction
from the model. We analyzed an entire match to calculate the
probability that these values were related. By plotting both of
these variables on a scatter plot and conducting a Spearman



(a)

(b) (c)

Fig. 4: (a) shows the results of a randomly sampled game (ID 2857921062) from the test set, run through our prediction model
with our threshold set to 0.5. Visual indication of certainty of kills which are labelled as ‘K’ with red probability line showing
certainty of the death for each individual player, with teams annotated as red and blue. (b) and (c) show smaller blown-up
sections of the game, highlighting the two respective shaded regions in (a).

rank correlation coefficient, giving a value of -0.09 with P <
0.001. Effectively, heavily disproving any issues regarding the
learning of the network regressing on one variable.

VI. DISCUSSION

Dota 2’s replay function provides the ability to replay
matches exactly. While delving in to the replay for Fig. 4a’s
match accompanied by our prediction tool, we could more
closely monitor false predictions from the network, rather
than witnessing them statistically as mis-classifying a kill.
What we found indicated that although the network would be
certain a player would die, a myriad of external factors would
come into play. For example whether a player would commit
to a kill while not having full information on the enemy
team, or simply miscalculating their damage. A further study
would need to be conducted to understand what is exactly
happening within these moments, perhaps with professional
domain assistance. What is certain is that at each spike of kill
prediction an encounter between two or more heroes occurs.

To determine the usefulness of the model as a commentator
assisting tool, the ability to predict interesting situations must
be evaluated. Using standard performance metrics such as
precision or recall are not satisfactory for this purpose, since
different kinds of mispredictions have different impact on the
usefulness of the model. We can classify mispredictions into
four categories:

1) False negatives. The hero will die, but the model failed
to predict it.

2) False positives where hero is about to die, but not within
5 seconds.

3) False positives where hero is not about to die, but
professional players would evaluate the situation as
dangerous.

4) False positives where hero is not about to die, and
professional players would evaluate the situation as not
dangerous.

A model with a large number of category 1 errors can
still provide assistance to a commentator, even though this



assistance is provided less often. On the other hand a large
number of category 4 errors have a catastrophic effect on the
usefulness of the model. If the model constantly alerts the
commentator to uninteresting events, it becomes a hindrance
instead of a help.

Category 2 and 3 mispredictions arguably make the model
more useful and thus they are desirable. Category 2 mispredic-
tions can alert the commentator to fights where someone will
die further ahead in time. A game situation when someone
barely escaped can be just as interesting or entertaining as
when someone died. The ability to predict such situations
makes the model more useful, thus category 3 mispredictions
are desirable. Unfortunately, to differentiate between category
3 and 4 mispredictions, human expert input is needed. For
this reason evaluating the performance is difficult and requires
further work.

VII. CONCLUSION

In the above we have outlined our research on micro-
predictions in the esports game Dota 2. Using a multilayered
perceptron, trained on a vast array of features, that utilizes
shared weights within the first half of the network, the ability
to train a model that can accurately predict the death-state
of every player within a live or recorded game of Dota 2,
while efficiently dealing with the symmetric inputs of a MOBA
data set. We further describe the process of pre-processing
esports data from Dota 2 and how to replicate the experiments
presented in their entirety, including the results of a large scale
parameter exploration on network and feature architectures.
Jointly, this will assist future experiments targeting micro-
predictions into esports. The novel contribution of this paper
is the exploration of deep learning models applied to Dota 2 at
a micro level (or event level) as compared to match level. We
provide a model for predicting the death of professional Dota
2 players with a high degree of accuracy within a 5 second
window, with an example shown in Fig. 4a. Though we trained
for a 5 second window of prediction, the model has learned
inherent properties of features that constitute kills such that in
certain situation the network can predict even prior to the 5
second window. The distribution of these probabilities can be
seen in the violin plot in Fig. 2.

The model can also be developed into a focus tool for
game commentators that can direct their focus and storytelling
upwards of 5 seconds before kills occur within the game.
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