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ABSTRACT 

In this paper we focus on identifying image structures at 

different levels in figurative (trademark) images to allow 

higher level similarity between images to be inferred. To 

identify image structures at different levels, it is desirable 

to be able to achieve multiple views of an image at 

different scales and then extract perceptually-relevant 

shapes from the different views. The three aims of this 

work are: to generate multiple views of each image in a 

principled manner, to identify structures and shapes at 

different levels within images and to emulate the Gestalt 

principles to guide shape finding. The proposed integrated 

approach is able to meet all three aims.  
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1 Introduction 
 

Computerised image retrieval takes a query image and 

attempts to find all matching images: images which might 

be deemed similar to the query image by a human analyst. 

Most experts agree that shape similarity is the most 

important determining factor for figurative (trademark) 

image similarity in humans [1]. In this paper, we focus on 

the task of using computerised methods to find shapes in 

trademark images to allow image similarity matching and 

retrieval that emulates human matching. However, human 

image similarity is not just determined by the similarity of 

simple image shapes but also encompasses higher-level 

patterns (structures) made by the individual shapes 

following the Gestalt principles such as similarity, 

proximity or continuity [2].  Thus, we introduce an 

approach for finding patterns (structures and shapes) in 

trademark images, at different perceptual levels emulating 

the Gestalt principles. The Gestalt principles refer to the 

shape-forming capability of human vision. In particular, 

they refer to the visual recognition of structures and 

whole shapes rather than just ‘seeing’ a simple collection 

of lines and curves. Hence a computerised image retrieval 

system must be able to identify and match the most salient 

aspects of an image's appearance including: the image’s 

overall shape, the shapes of important image components 

or shapes defined by perceptually significant groupings of 

components.  

 

Finding perceptual structures and shapes requires 

generating image representations (views) at different 

levels. This is a difficult task that requires a "semantic" 

level of understanding and a number of different 

processing methods as no one technique is ubiquitous. By 

integrating a series of techniques, we aim to overcome the 

limitations of each individual technique while exploiting 

their strengths. In IBM's QBIC system [3] each image in 

the database has multiple representations achieved 

through the use of different feature spaces of an image 

rather than by generating new views at different scales. 

French et al. [4] introduce an image retrieval system that 

employs multiple image representations and then 

consolidates the results of matching the different 

representations to produce a ranked list of results. We 

take our cue from French et al. [4] and generate multiple 

views of the image. We use scale space selection [5] and 

Gaussian pyramids [6] to blur the image followed by 

pixel clustering to extract the image structures at different 

levels. After clustering, we identify the shapes and 

structures within the image views using edge 

segmentation and linking that obeys the Gestalt principles 

of continuity and proximity. We thus have a set of image 

views for each image and each view has a set of shapes. 

These sets represent the shapes present in the image at 

different perceptual levels. 

 

2 View generation and shape identification 
 

Sections 2.1-2.4 describe how we merge lower level 

shapes and texture within the image to extract structures 

and produce perceptual views of the image. Section 2.5 

describes a shape identification algorithm to determine 

the shapes present in these views and to identify other 

perceptual structures missed by the view generation step. 

 

2.1 Scale Space representation 

 
The first step for generating multiple perceptual views is 

image scaling. Scaling an image by different amounts 

allows us to identify different levels of structure within 

the image by blurring (merging) lower level structures 

and thus revealing the higher level structures, for example 

removing texture and grouping shapes. Here we develop 

the scale-space method of Lindeberg [5] which 

automatically selects the optimum scaling factor.  



The scale-space representation for a 512x512 pixel 2-D 

image (
2ℜ∈ I ) of continuous ℜ→ℜ2:f  where f (x, y) 

is the pixel intensity at (x, y) is ℜ→ℜ×ℜ +
2:L which is 

given by the solution of the diffusion eqs 1 and 2.  
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=  and ∗  is the convolution 

operation. The scale parameter +ℜ∈t  corresponds to the 

square of the standard deviation of the kernel t=σ
2
. We are 

interested in the significant structures’ edges in the image 

so we choose the normalised Laplacian which is a 

“general purpose” edge-detector. We look for maxima 

(with respect to t) of ),(2 tLt xx∇ , where L is the scale-space 

representation of f, and f is the pixel intensity pattern of 

our image.  In terms of the more usual spread of a 

Gaussian, we look for maxima (with respect to σ
2
) 

of ),( 222 σσ xLx∇ .  

 

To look for these maxima, Lindeberg either: selects a 

fixed point (e.g., the image centre), or follows the spatial 

maxima through the image as they move with increasing 

t. To avoid the heavy processing required by the second 

approach while also reducing the possibility of missing 

scales by using the first approach, we choose several fixed 

points in the image. Therefore, the values iij Jj ,...,1,
2 =σ  

are our candidate scales taken from 25 equally spread 

sample points xi. We also limit the permissible scales in 

{σ} to between 2 and 24. Allowing higher values causes 

the image to be too blurred to be useful for image 

structure segmentation purposes.  

 

We now have a set of candidate scales {σ} for the 25 

sample points. We take the histogram of {σ} to identify 

the optimal scale to use to process the image and smooth 

this histogram with a 3-value kernel {1, 2, 1} to remove 

perturbations. The {1, 2, 1} kernel assigns a higher 

weighting to the central (chosen) value and a lower 

weighting to its two direct neighbours thus allowing us to 

select our optimum scale. The σ corresponding to the first 

highest peak in the histogram is taken as our final scale.  

 

2.2 Gaussian Pyramids 

 

In this stage the aim is to determine informative image 

scales to identify structures in images. Scale-space 

selection identifies informative scales but can be 

inconsistent due to the chance placement of the 25 sample 

points leading to under or over generalisation of the 

regions surrounding each sample point. Conversely, the 

Gaussian Pyramid is consistent across images but uses 

fixed scale values meaning it cannot adapt to different 

scales and may miss structures. Therefore, we introduce 

the pyramid as a pre-processor to provide consistency by 

pre-smoothing images to increase their similarity prior to 

scale selection.  

 
Fig. 1. The multiple levels of the Gaussian pyramid where the 

filtered image levels effectively form an inverted pyramid structure. 
 

The pyramid takes an image G0(x, y) and convolves the 

image with a Gaussian kernel (low-pass filter) to produce 

image G1(x, y). The derived image G1(x, y) is then 

convolved with the kernel to produce G2(x, y) which is 

then processed to produce G3(x, y). For our pyramid 

implementation, we use 4 levels G0, G1, G2, G3 with 

dimensions 512x512, 256x256, 128x128, 64x64 pixels 

respectively as shown in Fig. 1. 

 

If 
2ℜ∈ I  is the original 512x512 pixel 2-D image then 

the pyramid is computed as eqs 3 and 4: 

 

G0(x, y) = I(x, y)     (3) 

Gi+1(x, y) = FILTER(Gi(x, y)) + RESIZE(Gi(x, y)) (4)  

 

For the FILTER function, we use the standard Gaussian 

function in eq 5: 
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where we set σ
2
 = 3.   

 

Filtering is followed by RESIZE which resizes Gi by scale 

factor 0.5 to give Gi+1 using separable spline interpolation 

algorithm described in [7]. We found that resizing without 

interpolation over-emphasises jagged lines in images by 

increasing the aliasing. 

 

The next processing step is to divide each blurred variant 

of the image into regions (structures). We use pixel 

intensity categorisation to identify the structures. 

 

2.3 Categorisation 

 

To categorise (cluster) the pixels, we take our cue from 

Lu and Chung [8] who proposed a hill-clustering method 

for determining the number of texture clusters. So, for 

each pyramid level Gi(x, y), the scale (σ) is selected and 

the image is blurred with a Gaussian kernel of size σ 



giving Bi(x, y). From Bi(x, y), we generate a histogram of 

pixel greyscale intensity values (divided into 255 bins). 

This raw histogram needs smoothing using a one-

dimensional Gaussian with standard deviation 10 bins (1 

pixel width) before it is usable.   We then choose the N 

highest peaks (N categories) of the smoothed histogram 

and set thresholds midway between neighbouring peaks 

which should reflect the larger-scale structures in the 

image as shown in Fig. 2.  

 

Fig. 2. (a) is the source image. (b) is this image’s pixel intensity 

histogram with the pixel intensity threshold drawn for k=2 

categories - the trough in the histogram identifies the threshold 

(category boundary). (c) shows the result of categorisation. 

Previous pixel categorisation work [9] tends to rely upon 

a pre-specified maximum number of categories Mmax. The 

optimum number of categories is then determined by 

segmenting the image into k categories for 2 ≤ k ≤ Mmax 

and using some suitable criterion to select the optimum 

[9] which is laborious. We employ a simple heuristic 

which we developed following detailed analysis of the 

pixel intensity peaks of 450 trademark images used in 

[10]: sort the peaks into peak intensity order and if the 

peak value is less than 100 then do not include the peak. 

This resets Mmax to the k peaks with values greater than 

100. This value (100) was derived through a series of 

analyses. It is a trade-off: too high a value causes some 

images to have too few or even 0 categorisations. Too low 

a value causes too many categorisations for some images. 

We then identify the 2 highest peaks, 3 highest peaks up 

to Mmax highest peaks and divide the image into a series of 

views (image representations) with 2, 3 … Mmax categories 

per view. The result is a series of categorised views where 

pixels of similar intensity are grouped to reveal the 

structures within the image. 

 

2.4 View Generation 

 

It is desirable to differentiate line/region images from 

noisy/textured images and treat the two types differently. 

Line and region images require merging of lower level 

image structures (shapes) to infer the higher level 

structures. Textured and noisy images require the texture 

or noise to be effectively blurred out to produce a 

homogeneous region to represent the structure (shapes 

and regions) in the image. We specify Mmax as 2 for line 

and region–based images that are bicolour (black and 

white) and Mmax as 4 for texture/noisy or grey-scale 

images.  Note Mmax may be reset if there are fewer than 4 

peaks over 100. We have erred on the side of caution by 

allowing 4 categories to ensure all views are found while 

potentially some unwanted views may be generated.  

 

For this operation we use the Laplacian pyramid L0, 

operator, which represents the difference of Gaussians 

(G0-G1) [6]. This is essentially an edge detection of G0 

and is given in eq 6: 

 

L0(x, y) = G0(x, y) – RESIZE(G1(x, y))   (6) 

 

We can exploit the energy of L0 to differentiate the types 

as textured/noisy images will have a higher energy (more 

edges) compared to line/region images. Following visual 

analyses of the energy levels of: the decompositions seen 

by humans in 84 trademark images in a set of experiments 

[11], the decompositions seen by humans in 63 trademark 

images in a set of experiments [12] and a further set of 

450 images comprising clean, noisy and textured images 

[10], we use the following processing steps for the two 

types of images: 

 

First, calculate the energy of L0 as in eq. 7. 

Energy = ∑
∀ yx

yx,p
,

2)(       (7) 

where p(x, y) is the greyscale value of pixel (x, y) in L0. 

 

Then apply the following decision rules: 

If energy < 9600 then process the image as a region-

based/line-based. 

If energy ≥ 9600 then process the image as a 

textured/noisy image. 

 

We then process these selections as follows: 

 
For region/line-based images 

• G0 – unprocessed. 

• G2 – straight categorisation of  G2 image  – no scale 

selection. 

• G3 – select scale (kernel width), convolve Gaussian 

(σ) with G3 image, categorise resulting 

convolved image. 

 
For texture/noisy images  
There is a tendency for σ0==σ2 in textured/noisy images 

where σ0 is the scale selected for G0 and σ2 is the scale 

selected for G2. During our analyses, we found that G0 

and G2 were the best levels of the Gaussian pyramid to 

process for textured images. However, if   σ0==σ2 this 

would produce virtually identical outputs when G0 and G2 

were convolved with equivalent kernels and is not 

desirable. Accordingly, we test for equivalence and alter 

our processing strategy accordingly. 

• If (σ0 <> σ2) then  

o G0 – select scale (kernel width), convolve 

Gaussian (σ0) with G0 image, categorise resulting 

convolved image. 



o G2 – select scale (kernel width), convolve 

Gaussian (σ2) with G2 image, categorise resulting 

convolved image. 

 

• If (σ0 == σ2) then  

o G0 – select scale (kernel width), convolve 

Gaussian (σ0) with G0 image, categorise resulting 

convolved image. 

o G3 – straight categorisation of G3  – no scale 

selection. 

 

2.5 Shape Identification 

 
In sections 2.1-2.4, we have produced various views of an 

image with the aim of merging lower level shapes and 

texture to pinpoint perceptual structures. Next we identify 

shapes in this data. Our image structure-finding approach 

uses a closed shape identification algorithm.  The method 

adapts and refines Saund’s closed shape identification 

algorithm [13]. By doing this, the approach can find 

higher level (perceptual) shapes. 

 

Initially, the closed shape algorithm requires an 

underlying technique to identify the edge segments within 

an image and to detect the relationships between those 

edge segments. We resize the multiple views generated to 

2048x2048 pixels from 512x512 to ensure edge 

separation as all structures will be at least 4 pixels wide 

and the structure’s edges will not be adjacent. If the edges 

are in adjacent pixels then tracing the shapes is difficult as 

it is not clear which edge a pixel belongs to. We resize 

with no interpolation to prevent blurring of the edges in 

the view as blurred edges will confuse the edge detector. 

We find the edges in the image using a simple Laplacian 

edge detector before subdividing these edges into constant 

curvature segments (CCSs) using the Wuescher & Boyer 

[14] curve segmentation algorithm. This aggregates edge 

primitives into more perceptually-oriented CCSs. We 

have refined and improved the technique by increasing 

the tidying of the edges prior to edge segmentation to 

ensure there are no gaps or errors in the edges and 

tailoring the parameter settings to trademark images to 

improve the quality of the CCSs produced.  

 

These CCSs thus provide the building blocks for our 

closed shape identifier as in fig 3. Our aim is to group 

these CCSs using Gestalt-like methods to produce a graph 

of CCS relations which will underpin the Saund closed 

shape identification algorithm.  Each CCS becomes a 

node in the graph with two ends (first point - denoted as 

an x, y coordinate and last point - also denoted as an x, y 

coordinate). We find all segments that are end-point 

proximal. We extract endpoint proximity by comparing 

CCSs.  We have evaluated various distances (in pixels) to 

use for end-point proximity calculations and found the 

following performed optimally with respect to finding 

perceptual shapes and structures. 

 

 
Fig. 3. A set of CCSs (0-6). The arrow heads denote the first end of 

the line segment and the opposite end of the line segment is hence 

the last end.  

 

If dist(CCS1,CCS2) < 32 pixels then CCS1 and CCS2 are 

end-point proximal. If dist(CCS1,CCS2) < 256 and the 

difference between the gradients of the lines (or the 

terminal gradients of curves) is within ±5° then CCS1 and 

CCS2 are end-point proximal (and continuous). This 

effectively joins the graph by linking the proximal end-

points and mimics human perception by allowing a wider 

gap between continuous pairs than non-continuous pairs 

of CCSs. Note that we differentiate CCS ends (first, last) 

and only allow one end-point proximity between CCS1_last 

and CCS2 to prevent cycles. We always use the closest so 

if dist(CCS1_last, CCS2_first)=10 and dist(CCS1_last, 

CCS2_last)=11 then the proximity is CCS1_last→CCS2_first 

even though dist (CCS1_last, CCS2_last) < 32.  

 

Our closed shape algorithm overlays this graph. The 

search commences from each end (first and last) of each 

node (CCS). For each end (first then last) in turn, all 

possible paths are followed. This effectively forms a 

search tree with paths through the tree representing the 

possible shapes present in the image, see fig 4.  

 

 
Fig. 4. The search tree for the set of CCSs in Fig. 3. The left tree 

shows the tree after expanding each end of node 0 (root). The middle 

tree shows how, when the tree is expanded by node 2, a closed path 

is found - 0126. When 2 is expanded, although 6 is end-point 

proximal it is not added as it is already present on the opposite side 

of the tree. The right tree shows the tree expanded by node 4 and 

node 3. A second closed path is identified - 012345. 

 

The search is managed through the use of scores for 

ranking possible paths through junctions such as t-

junction or crossroads, see table 1. We have revised the 

junction scores used by Saund to improve the quality of 

the results for figurative images and to make the 

algorithm more consistent.  We used the results from our 

previous work involving human experiments [11] to 

derive our new junction scores. During path search and 

scoring, we separate straight paths from turning paths 

using the table of scores depending on whether the path 



is: turning clockwise (CW) or anticlockwise (ACW); OR 

straight clockwise or anticlockwise. Each path 

accumulates a score using the score from each junction it 

passes through. Our path scores are an average of the 

junction scores. Saund’s uses a cumulative (product) 

calculation but this favours short paths whereas we allow 

longer paths to be explored. We have a minimum score 

threshold (0.6 for straight paths and 0.8 for turning paths), 

compared to 0.6 and 0.9 respectively for Saund. As soon 

as the average score for a path falls below the minimum 

score, we terminate the search on that path. These 

minimum scores were derived from a series of analyses 

using the images from [10]. 

 
Junction Turning 

ACW 

Turning 

CW 

Straight 

ACW 

Straight 

CW 

dist(CCS1,CCS2)  

< 2 pixels 

1.0 1.0 1.0 1.0 

 

1.0 0.7 1.0 0.7 

 

0.7 1.0 0.7 1.0 

 

1.0 0.5 0.9 0.5 

 

1.0 1.0 1.0 1.0 

 

1.0 1.0 1.0 1.0 

 

0.5 1.0 0.5 0.9 

 

1.0 0.5 0.9 0.5 

 

0.5 1.0 0.5 0.9 

 

1.0 0.5 0.6 0.5 

 

1.0 1.0 1.0 1.0 

 

0.5 1.0 0.5 0.6 

 

1.0 1.0 1.0 1.0 

Table 1. A table of the shape finding junction scores.  Each row 

represents a junction configuration such as t-junction or crossroads. 

The arrow indicates the path direction through the junction.  The 

bold scores differ from Saund’s scores. 

 

As each leaf node in the tree is expanded, new child nodes 

are compared with child nodes in the opposite side of the 

tree. If they are end-point proximal then a closed path (a 

cycle) has been identified and its nodes and boundary 

pixels are added to the list of candidate paths. To produce 

the set of shapes for each image in this paper, we accept 

all candidate paths; only repetitions are removed.  We 

have produced a perceptual relevance classifier that can 

rank or classify shapes as perceptually relevant or 

irrelevant [15] and discard perceptually irrelevant shapes. 

 

3 Results 
 

We present some results of our methods. Fig 5 shows that 

higher-level structure (a ring shape) is extracted using 

blurring and categorisation. In fig 6, we show the result of 

blurring and categorising a textured and noisy image to 

demonstrate that the texture is clustered and the higher-

level structure of the image is revealed. Finally, in fig 7, 

we show that perceptual shapes are found using our 

methods.  We thus prove that by using our processing 

pathway to blur, categorise, edge segment and identify the 

shapes, perceptually relevant shapes may be extracted. 

 

 
Fig. 5. Three images (a, b and c) and their respective outputs. All 

images were classified as line/region by the energy-based classifier.  

 

In fig 5, the views produced from each image are similar 

when compared visually by a human observer on a 

column basis. The ring–structure has been found. If the 

three images in fig. 5, column 3 were matched the ring 

structures would be similar.  If the three original images 

in column 1 were matched they would not be similar.   

 

 
Fig. 6. The original image (a) is processed to produce a series of 

image views (b, c and d). The edges found are shown in e, f, g, and h  



 

Our results are not perfect. For example, in fig 6, results b 

and c are good. View (d) is probably superfluous here but 

the energy level and pixel intensity minimum have to be 

set globally so this may result in an occasional 

superfluous output for some images. The edges shown in 

f, g and h demonstrate that we have found the image 

structures to allow image matching. Although there is a 

tiny amount of noise remaining, it comprises very small 

blobs which could easily be removed using a suitable 

image processing technique. In contrast, image (e) shows 

the (1000+) edges detected in the original image and no 

discernible structures.  
 

 
Fig. 7. The six perceptual shapes found by the shape identifier from 

the trademark image view in the top row. 

 

In fig 7, the shape identifier has found the set of 

perceptual shapes we may expect a human to identify [11] 

in the trademark image view.  This set of shapes may be 

used for perceptual image matching and retrieval.   
 

4 Conclusion 
 

We have developed and demonstrated a figurative image 

processing pathway comprising a suite of methods to find 

perceptual shapes (structures) within images. Each image 

will produce a number of views and each view will 

produce a number of perceptual shapes.  The set of shapes 

found for each view may be matched and thus used for 

image matching and retrieval. 

  

No single shape finding method works for all images so, 

by systematically combining different methods and using 

image information to guide the processing we have 

identified perceptual structures. The method follows the 

Gestalt principles (such as proximity, continuity and 

similarity) and has been designed using results from 

human image analysis experiments. 

 

The method has been developed within the EU PROFI 

project to extract the perceptual structures from trademark 

images to be stored in a trademark database for trademark 

image retrieval. 
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