

IDENTIFYING PERCEPTUAL STRUCTURES IN TRADEMARK IMAGES

Victoria J. Hodge, Garry Hollier, Jim Austin & John Eakins

Advanced Computer Architectures Group

Dept of Computer Science, University of York

Heslington, York, YO10 5DD

UK

{vicky, hollier, eakins, austin}@cs.york.ac.uk

ABSTRACT

In this paper we focus on identifying image structures at

different levels in figurative (trademark) images to allow

higher level similarity between images to be inferred. To

identify image structures at different levels, it is desirable

to be able to achieve multiple views of an image at

different scales and then extract perceptually-relevant

shapes from the different views. The three aims of this

work are: to generate multiple views of each image in a

principled manner, to identify structures and shapes at

different levels within images and to emulate the Gestalt

principles to guide shape finding. The proposed integrated

approach is able to meet all three aims.

KEY WORDS

Image segmentation and representation, perceptual shape

finding.

1 Introduction

Computerised image retrieval takes a query image and

attempts to find all matching images: images which might

be deemed similar to the query image by a human analyst.

Most experts agree that shape similarity is the most

important determining factor for figurative (trademark)

image similarity in humans [1]. In this paper, we focus on

the task of using computerised methods to find shapes in

trademark images to allow image similarity matching and

retrieval that emulates human matching. However, human

image similarity is not just determined by the similarity of

simple image shapes but also encompasses higher-level

patterns (structures) made by the individual shapes

following the Gestalt principles such as similarity,

proximity or continuity [2]. Thus, we introduce an

approach for finding patterns (structures and shapes) in

trademark images, at different perceptual levels emulating

the Gestalt principles. The Gestalt principles refer to the

shape-forming capability of human vision. In particular,

they refer to the visual recognition of structures and

whole shapes rather than just ‘seeing’ a simple collection

of lines and curves. Hence a computerised image retrieval

system must be able to identify and match the most salient

aspects of an image's appearance including: the image’s

overall shape, the shapes of important image components

or shapes defined by perceptually significant groupings of

components.

Finding perceptual structures and shapes requires

generating image representations (views) at different

levels. This is a difficult task that requires a "semantic"

level of understanding and a number of different

processing methods as no one technique is ubiquitous. By

integrating a series of techniques, we aim to overcome the

limitations of each individual technique while exploiting

their strengths. In IBM's QBIC system [3] each image in

the database has multiple representations achieved

through the use of different feature spaces of an image

rather than by generating new views at different scales.

French et al. [4] introduce an image retrieval system that

employs multiple image representations and then

consolidates the results of matching the different

representations to produce a ranked list of results. We

take our cue from French et al. [4] and generate multiple

views of the image. We use scale space selection [5] and

Gaussian pyramids [6] to blur the image followed by

pixel clustering to extract the image structures at different

levels. After clustering, we identify the shapes and

structures within the image views using edge

segmentation and linking that obeys the Gestalt principles

of continuity and proximity. We thus have a set of image

views for each image and each view has a set of shapes.

These sets represent the shapes present in the image at

different perceptual levels.

2 View generation and shape identification

Sections 2.1-2.4 describe how we merge lower level

shapes and texture within the image to extract structures

and produce perceptual views of the image. Section 2.5

describes a shape identification algorithm to determine

the shapes present in these views and to identify other

perceptual structures missed by the view generation step.

2.1 Scale Space representation

The first step for generating multiple perceptual views is

image scaling. Scaling an image by different amounts

allows us to identify different levels of structure within

the image by blurring (merging) lower level structures

and thus revealing the higher level structures, for example

removing texture and grouping shapes. Here we develop

the scale-space method of Lindeberg [5] which

automatically selects the optimum scaling factor.

The scale-space representation for a 512x512 pixel 2-D

image (
2ℜ∈ I) of continuous ℜ→ℜ2:f where f (x, y)

is the pixel intensity at (x, y) is ℜ→ℜ×ℜ +
2:L which is

given by the solution of the diffusion eqs 1 and 2.

∑
=

∂=∇=∂

D

i

xxt LLL
ii

1

2

2

1

2

1
 (1)

with () ()xx fL =0, where 2),(x ℜ∈= yx

)))((),((),(xx ⋅∗⋅= ftgtL (2)

)2/(-

2/

T

e
)2(

1
),(

t

D
t

tg
xx

x
π

= and ∗ is the convolution

operation. The scale parameter +ℜ∈t corresponds to the

square of the standard deviation of the kernel t=σ
2
. We are

interested in the significant structures’ edges in the image

so we choose the normalised Laplacian which is a

“general purpose” edge-detector. We look for maxima

(with respect to t) of),(2 tLt xx∇ , where L is the scale-space

representation of f, and f is the pixel intensity pattern of

our image. In terms of the more usual spread of a

Gaussian, we look for maxima (with respect to σ
2
)

of),(222 σσ xLx∇ .

To look for these maxima, Lindeberg either: selects a

fixed point (e.g., the image centre), or follows the spatial

maxima through the image as they move with increasing

t. To avoid the heavy processing required by the second

approach while also reducing the possibility of missing

scales by using the first approach, we choose several fixed

points in the image. Therefore, the values iij Jj ,...,1,
2 =σ

are our candidate scales taken from 25 equally spread

sample points xi. We also limit the permissible scales in

{σ} to between 2 and 24. Allowing higher values causes

the image to be too blurred to be useful for image

structure segmentation purposes.

We now have a set of candidate scales {σ} for the 25

sample points. We take the histogram of {σ} to identify

the optimal scale to use to process the image and smooth

this histogram with a 3-value kernel {1, 2, 1} to remove

perturbations. The {1, 2, 1} kernel assigns a higher

weighting to the central (chosen) value and a lower

weighting to its two direct neighbours thus allowing us to

select our optimum scale. The σ corresponding to the first

highest peak in the histogram is taken as our final scale.

2.2 Gaussian Pyramids

In this stage the aim is to determine informative image

scales to identify structures in images. Scale-space

selection identifies informative scales but can be

inconsistent due to the chance placement of the 25 sample

points leading to under or over generalisation of the

regions surrounding each sample point. Conversely, the

Gaussian Pyramid is consistent across images but uses

fixed scale values meaning it cannot adapt to different

scales and may miss structures. Therefore, we introduce

the pyramid as a pre-processor to provide consistency by

pre-smoothing images to increase their similarity prior to

scale selection.

Fig. 1. The multiple levels of the Gaussian pyramid where the

filtered image levels effectively form an inverted pyramid structure.

The pyramid takes an image G0(x, y) and convolves the

image with a Gaussian kernel (low-pass filter) to produce

image G1(x, y). The derived image G1(x, y) is then

convolved with the kernel to produce G2(x, y) which is

then processed to produce G3(x, y). For our pyramid

implementation, we use 4 levels G0, G1, G2, G3 with

dimensions 512x512, 256x256, 128x128, 64x64 pixels

respectively as shown in Fig. 1.

If
2ℜ∈ I is the original 512x512 pixel 2-D image then

the pyramid is computed as eqs 3 and 4:

G0(x, y) = I(x, y) (3)

Gi+1(x, y) = FILTER(Gi(x, y)) + RESIZE(Gi(x, y)) (4)

For the FILTER function, we use the standard Gaussian

function in eq 5:

2

2

2
,

2

1
)(σ

σ
πσ

e

n

n

n e
x

xf
−

∂

∂
= (5)

where we set σ
2
 = 3.

Filtering is followed by RESIZE which resizes Gi by scale

factor 0.5 to give Gi+1 using separable spline interpolation

algorithm described in [7]. We found that resizing without

interpolation over-emphasises jagged lines in images by

increasing the aliasing.

The next processing step is to divide each blurred variant

of the image into regions (structures). We use pixel

intensity categorisation to identify the structures.

2.3 Categorisation

To categorise (cluster) the pixels, we take our cue from

Lu and Chung [8] who proposed a hill-clustering method

for determining the number of texture clusters. So, for

each pyramid level Gi(x, y), the scale (σ) is selected and

the image is blurred with a Gaussian kernel of size σ

giving Bi(x, y). From Bi(x, y), we generate a histogram of

pixel greyscale intensity values (divided into 255 bins).

This raw histogram needs smoothing using a one-

dimensional Gaussian with standard deviation 10 bins (1

pixel width) before it is usable. We then choose the N

highest peaks (N categories) of the smoothed histogram

and set thresholds midway between neighbouring peaks

which should reflect the larger-scale structures in the

image as shown in Fig. 2.

Fig. 2. (a) is the source image. (b) is this image’s pixel intensity

histogram with the pixel intensity threshold drawn for k=2

categories - the trough in the histogram identifies the threshold

(category boundary). (c) shows the result of categorisation.

Previous pixel categorisation work [9] tends to rely upon

a pre-specified maximum number of categories Mmax. The

optimum number of categories is then determined by

segmenting the image into k categories for 2 ≤ k ≤ Mmax

and using some suitable criterion to select the optimum

[9] which is laborious. We employ a simple heuristic

which we developed following detailed analysis of the

pixel intensity peaks of 450 trademark images used in

[10]: sort the peaks into peak intensity order and if the

peak value is less than 100 then do not include the peak.

This resets Mmax to the k peaks with values greater than

100. This value (100) was derived through a series of

analyses. It is a trade-off: too high a value causes some

images to have too few or even 0 categorisations. Too low

a value causes too many categorisations for some images.

We then identify the 2 highest peaks, 3 highest peaks up

to Mmax highest peaks and divide the image into a series of

views (image representations) with 2, 3 … Mmax categories

per view. The result is a series of categorised views where

pixels of similar intensity are grouped to reveal the

structures within the image.

2.4 View Generation

It is desirable to differentiate line/region images from

noisy/textured images and treat the two types differently.

Line and region images require merging of lower level

image structures (shapes) to infer the higher level

structures. Textured and noisy images require the texture

or noise to be effectively blurred out to produce a

homogeneous region to represent the structure (shapes

and regions) in the image. We specify Mmax as 2 for line

and region–based images that are bicolour (black and

white) and Mmax as 4 for texture/noisy or grey-scale

images. Note Mmax may be reset if there are fewer than 4

peaks over 100. We have erred on the side of caution by

allowing 4 categories to ensure all views are found while

potentially some unwanted views may be generated.

For this operation we use the Laplacian pyramid L0,

operator, which represents the difference of Gaussians

(G0-G1) [6]. This is essentially an edge detection of G0

and is given in eq 6:

L0(x, y) = G0(x, y) – RESIZE(G1(x, y)) (6)

We can exploit the energy of L0 to differentiate the types

as textured/noisy images will have a higher energy (more

edges) compared to line/region images. Following visual

analyses of the energy levels of: the decompositions seen

by humans in 84 trademark images in a set of experiments

[11], the decompositions seen by humans in 63 trademark

images in a set of experiments [12] and a further set of

450 images comprising clean, noisy and textured images

[10], we use the following processing steps for the two

types of images:

First, calculate the energy of L0 as in eq. 7.

Energy = ∑
∀ yx

yx,p
,

2)((7)

where p(x, y) is the greyscale value of pixel (x, y) in L0.

Then apply the following decision rules:

If energy < 9600 then process the image as a region-

based/line-based.

If energy ≥ 9600 then process the image as a

textured/noisy image.

We then process these selections as follows:

For region/line-based images

• G0 – unprocessed.

• G2 – straight categorisation of G2 image – no scale

selection.

• G3 – select scale (kernel width), convolve Gaussian

(σ) with G3 image, categorise resulting

convolved image.

For texture/noisy images
There is a tendency for σ0==σ2 in textured/noisy images

where σ0 is the scale selected for G0 and σ2 is the scale

selected for G2. During our analyses, we found that G0

and G2 were the best levels of the Gaussian pyramid to

process for textured images. However, if σ0==σ2 this

would produce virtually identical outputs when G0 and G2

were convolved with equivalent kernels and is not

desirable. Accordingly, we test for equivalence and alter

our processing strategy accordingly.

• If (σ0 <> σ2) then

o G0 – select scale (kernel width), convolve

Gaussian (σ0) with G0 image, categorise resulting

convolved image.

o G2 – select scale (kernel width), convolve

Gaussian (σ2) with G2 image, categorise resulting

convolved image.

• If (σ0 == σ2) then

o G0 – select scale (kernel width), convolve

Gaussian (σ0) with G0 image, categorise resulting

convolved image.

o G3 – straight categorisation of G3 – no scale

selection.

2.5 Shape Identification

In sections 2.1-2.4, we have produced various views of an

image with the aim of merging lower level shapes and

texture to pinpoint perceptual structures. Next we identify

shapes in this data. Our image structure-finding approach

uses a closed shape identification algorithm. The method

adapts and refines Saund’s closed shape identification

algorithm [13]. By doing this, the approach can find

higher level (perceptual) shapes.

Initially, the closed shape algorithm requires an

underlying technique to identify the edge segments within

an image and to detect the relationships between those

edge segments. We resize the multiple views generated to

2048x2048 pixels from 512x512 to ensure edge

separation as all structures will be at least 4 pixels wide

and the structure’s edges will not be adjacent. If the edges

are in adjacent pixels then tracing the shapes is difficult as

it is not clear which edge a pixel belongs to. We resize

with no interpolation to prevent blurring of the edges in

the view as blurred edges will confuse the edge detector.

We find the edges in the image using a simple Laplacian

edge detector before subdividing these edges into constant

curvature segments (CCSs) using the Wuescher & Boyer

[14] curve segmentation algorithm. This aggregates edge

primitives into more perceptually-oriented CCSs. We

have refined and improved the technique by increasing

the tidying of the edges prior to edge segmentation to

ensure there are no gaps or errors in the edges and

tailoring the parameter settings to trademark images to

improve the quality of the CCSs produced.

These CCSs thus provide the building blocks for our

closed shape identifier as in fig 3. Our aim is to group

these CCSs using Gestalt-like methods to produce a graph

of CCS relations which will underpin the Saund closed

shape identification algorithm. Each CCS becomes a

node in the graph with two ends (first point - denoted as

an x, y coordinate and last point - also denoted as an x, y

coordinate). We find all segments that are end-point

proximal. We extract endpoint proximity by comparing

CCSs. We have evaluated various distances (in pixels) to

use for end-point proximity calculations and found the

following performed optimally with respect to finding

perceptual shapes and structures.

Fig. 3. A set of CCSs (0-6). The arrow heads denote the first end of

the line segment and the opposite end of the line segment is hence

the last end.

If dist(CCS1,CCS2) < 32 pixels then CCS1 and CCS2 are

end-point proximal. If dist(CCS1,CCS2) < 256 and the

difference between the gradients of the lines (or the

terminal gradients of curves) is within ±5° then CCS1 and

CCS2 are end-point proximal (and continuous). This

effectively joins the graph by linking the proximal end-

points and mimics human perception by allowing a wider

gap between continuous pairs than non-continuous pairs

of CCSs. Note that we differentiate CCS ends (first, last)

and only allow one end-point proximity between CCS1_last

and CCS2 to prevent cycles. We always use the closest so

if dist(CCS1_last, CCS2_first)=10 and dist(CCS1_last,

CCS2_last)=11 then the proximity is CCS1_last→CCS2_first

even though dist (CCS1_last, CCS2_last) < 32.

Our closed shape algorithm overlays this graph. The

search commences from each end (first and last) of each

node (CCS). For each end (first then last) in turn, all

possible paths are followed. This effectively forms a

search tree with paths through the tree representing the

possible shapes present in the image, see fig 4.

Fig. 4. The search tree for the set of CCSs in Fig. 3. The left tree

shows the tree after expanding each end of node 0 (root). The middle

tree shows how, when the tree is expanded by node 2, a closed path

is found - 0126. When 2 is expanded, although 6 is end-point

proximal it is not added as it is already present on the opposite side

of the tree. The right tree shows the tree expanded by node 4 and

node 3. A second closed path is identified - 012345.

The search is managed through the use of scores for

ranking possible paths through junctions such as t-

junction or crossroads, see table 1. We have revised the

junction scores used by Saund to improve the quality of

the results for figurative images and to make the

algorithm more consistent. We used the results from our

previous work involving human experiments [11] to

derive our new junction scores. During path search and

scoring, we separate straight paths from turning paths

using the table of scores depending on whether the path

is: turning clockwise (CW) or anticlockwise (ACW); OR

straight clockwise or anticlockwise. Each path

accumulates a score using the score from each junction it

passes through. Our path scores are an average of the

junction scores. Saund’s uses a cumulative (product)

calculation but this favours short paths whereas we allow

longer paths to be explored. We have a minimum score

threshold (0.6 for straight paths and 0.8 for turning paths),

compared to 0.6 and 0.9 respectively for Saund. As soon

as the average score for a path falls below the minimum

score, we terminate the search on that path. These

minimum scores were derived from a series of analyses

using the images from [10].

Junction Turning

ACW

Turning

CW

Straight

ACW

Straight

CW

dist(CCS1,CCS2)

< 2 pixels

1.0 1.0 1.0 1.0

1.0 0.7 1.0 0.7

0.7 1.0 0.7 1.0

1.0 0.5 0.9 0.5

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

0.5 1.0 0.5 0.9

1.0 0.5 0.9 0.5

0.5 1.0 0.5 0.9

1.0 0.5 0.6 0.5

1.0 1.0 1.0 1.0

0.5 1.0 0.5 0.6

1.0 1.0 1.0 1.0

Table 1. A table of the shape finding junction scores. Each row

represents a junction configuration such as t-junction or crossroads.

The arrow indicates the path direction through the junction. The

bold scores differ from Saund’s scores.

As each leaf node in the tree is expanded, new child nodes

are compared with child nodes in the opposite side of the

tree. If they are end-point proximal then a closed path (a

cycle) has been identified and its nodes and boundary

pixels are added to the list of candidate paths. To produce

the set of shapes for each image in this paper, we accept

all candidate paths; only repetitions are removed. We

have produced a perceptual relevance classifier that can

rank or classify shapes as perceptually relevant or

irrelevant [15] and discard perceptually irrelevant shapes.

3 Results

We present some results of our methods. Fig 5 shows that

higher-level structure (a ring shape) is extracted using

blurring and categorisation. In fig 6, we show the result of

blurring and categorising a textured and noisy image to

demonstrate that the texture is clustered and the higher-

level structure of the image is revealed. Finally, in fig 7,

we show that perceptual shapes are found using our

methods. We thus prove that by using our processing

pathway to blur, categorise, edge segment and identify the

shapes, perceptually relevant shapes may be extracted.

Fig. 5. Three images (a, b and c) and their respective outputs. All

images were classified as line/region by the energy-based classifier.

In fig 5, the views produced from each image are similar

when compared visually by a human observer on a

column basis. The ring–structure has been found. If the

three images in fig. 5, column 3 were matched the ring

structures would be similar. If the three original images

in column 1 were matched they would not be similar.

Fig. 6. The original image (a) is processed to produce a series of

image views (b, c and d). The edges found are shown in e, f, g, and h

Our results are not perfect. For example, in fig 6, results b

and c are good. View (d) is probably superfluous here but

the energy level and pixel intensity minimum have to be

set globally so this may result in an occasional

superfluous output for some images. The edges shown in

f, g and h demonstrate that we have found the image

structures to allow image matching. Although there is a

tiny amount of noise remaining, it comprises very small

blobs which could easily be removed using a suitable

image processing technique. In contrast, image (e) shows

the (1000+) edges detected in the original image and no

discernible structures.

Fig. 7. The six perceptual shapes found by the shape identifier from

the trademark image view in the top row.

In fig 7, the shape identifier has found the set of

perceptual shapes we may expect a human to identify [11]

in the trademark image view. This set of shapes may be

used for perceptual image matching and retrieval.

4 Conclusion

We have developed and demonstrated a figurative image

processing pathway comprising a suite of methods to find

perceptual shapes (structures) within images. Each image

will produce a number of views and each view will

produce a number of perceptual shapes. The set of shapes

found for each view may be matched and thus used for

image matching and retrieval.

No single shape finding method works for all images so,

by systematically combining different methods and using

image information to guide the processing we have

identified perceptual structures. The method follows the

Gestalt principles (such as proximity, continuity and

similarity) and has been designed using results from

human image analysis experiments.

The method has been developed within the EU PROFI

project to extract the perceptual structures from trademark

images to be stored in a trademark database for trademark

image retrieval.

Acknowledgments

This work was supported by E.U. FP6 IST Project

Reference: 511572 - PROFI.

References

[1] J.P. Eakins, Trademark image retrieval - a survey,

Multimedia Storage and Retrieval Techniques - State of

the Art (Berlin: Springer-Verlag, 2000).

[2] E. Goldmeier. Similarity in Visually Perceived Forms,

Psychological Issues, 8(1), 1972.

[3] J. Ashley, et al, Automatic and Semiautomatic

Methods for Image Annotation and Retrieval in QBIC,

Proc Storage and Retrieval for Image and Video

Databases Conf, 1995.

[4] J. French, et al, An Exogenous Approach for Adding

Multiple Image Representations to Content-Based Image

Retrieval Systems, Proc 7th Int’l Symposium on Signal

Processing and its Applications, Paris, 2003.

[5] T. Lindeberg, Feature Detection with Automatic Scale

Selection, Int’l Journal of Computer Vision, 30(2), 1998.

[6] P.J. Burt & E.H. Adelson. The Laplacian Pyramid as a

compact image code, IEEE Trans on Communications,

31(4), 1983, 532-540.

[7] M. Unser, A. Aldroubi & M. Eden, B-Spline Signal

Processing, IEEE Trans on Signal Processing, 41(2)

1993, 821-833 (part I) & 834-848 (part II).

[8] C-S. Lu & P-C. Chung, Wold Features for

Unsupervised Texture Segmentation, Proc 14th Int’l Conf

on Pattern Recognition (ICPR'98), 1998.

[9] J. Mao & A.K. Jain, Texture classification and

segmentation using multiresolution simultaneous

autoregressive models, Pattern Recognition, 25, 1992,

173-188.

[10] R. van Leuken, F. Demirci, V.J. Hodge et al, Layout

Indexing of Trademark Images, Proc ACM Int’l Conf. on

Image and Video Retrieval (CIVR07), Amsterdam, 2007.

[11] V.J. Hodge, et al, Eliciting Perceptual Ground Truth

for Image Segmentation, Proc Int’l Conf on Image and

Video Retrieval (CIVR06), Tempe, AZ, 2006.

[12] M. Ren, J.P. Eakins & P. Briggs, Human perception

of trademark images: implications for retrieval system

design, Journal of Electronic Imaging, 9(4), 2000, 564-

575.

[13] E. Saund, Finding Perceptually Closed Paths in

Sketches and Drawings, IEEE Trans. Pattern Analysis

and Machine Intelligence, 25(4), 2003, 475-491.

[14] D.M. Wuescher & K.L. Boyer, Robust contour

decomposition using a constant curvature criterion, IEEE

Trans. Pattern Analysis and Machine Intelligence, 13(1),

1991, 41-51.

[15] V.J. Hodge, J. Eakins & J. Austin, Inducing a

Perceptual Relevance Shape Classifier, Proc ACM Int’l

Conf. on Image and Video Retrieval,

(CIVR07), Amsterdam, 2007.

