

A Binary Neural Decision Table Classifier

Victoria J. Hodge Simon O’Keefe Jim Austin
 vicky@cs.york.ac.uk sok@cs.york.ac.uk austin@cs.york.ac.uk

Advanced Computer Architecture Group

Department of Computer Science
University of York, York, YO10 5DD, UK

Abstract
In this paper, we introduce a neural network-based
decision table algorithm. We focus on the
implementation details of the decision table algorithm
when it is constructed using the neural network.
Decision tables are simple supervised classifiers which,
Kohavi demonstrated, can outperform state-of-the-art
classifiers such as C4.5. We couple this power with the
efficiency and flexibility of a binary associative-memory
neural network. We demonstrate how the binary
associative-memory neural network can form the
decision table index to map between attribute values and
data records. We also show how two attribute selection
algorithms, which may be used to pre-select the
attributes for the decision table, can easily be
implemented within the binary associative-memory
neural framework. The first attribute selector uses
mutual information between attributes and classes to
select the attributes that classify best. The second
attribute selector uses a probabilistic approach to
evaluate randomly selected attribute subsets.

Introduction
Supervised classifier algorithms aim to predict the class
of an unseen data item. They induce a hypothesis using
the training data to map inputs onto classified outputs
(decisions). This hypothesis should then correctly
classify previously unseen data items. There is a wide
variety of classifiers including: decision trees, neural
networks, Bayesian classifiers, Support Vector Machines
and k-nearest neighbour (k-NN).

We have previously developed a k-NN classifier[HA04]
using an associative memory neural network called the
Advanced Uncertain Reasoning Architecture
(AURA)[A95]. In this paper, we extend the approach to
encompass a decision table supervised classifier,
coupling the classification power of the decision table
with the speed and storage efficiency of an associative
memory neural network

The decision table has two components: a schema and a
body. The schema is the set of attributes pre-selected to
represent the data and is usually a subset of the data’s

total attributes. There are various approaches for
attribute selection; we discuss two later in this paper.
The body is essentially a table of labelled data items
where the attributes specified by the schema form the
rows and the decisions (classifications) form the
columns. Each column is mutually exclusive and
represents an equivalence set of records as defined by
the attributes of the schema. Kohavi [K95] uses a
Decision Table Majority (DTM) for classification
whereby if an unseen item exactly matches a stored
item in the body then the decision table assigns the
stored item’s decision to the unseen item. However, if
there is no exact match then the decision table assigns
the majority class across all items to the unseen item.
Our decision table approach implements both DTM
and proximity-based matching as implemented in our
k-NN classifier whereby if there is no exact match then
the decision table assigns the class of the nearest stored
item to the unseen item.

RAM-based Neural Networks
The AURA C++ library provides a range of classes and
methods for rapid partial matching of large data sets
[A95]. In this paper we define partial matching as the
retrieval of those stored records that match some or all
of the input record. In our AURA decision table, we
use best partial matching to retrieve the records that are
the top matches.

AURA belongs to a class of neural networks called
Random Access Memory (RAM-based) networks.
RAM-based networks were first developed by Bledsoe
& Browning [BB59] and Aleksander & Albrow
[AA68] for pattern recognition and led to the WISARD
pattern recognition machine [ATB84]. See also [A98]
for a detailed compilation of RAM methods.

RAMs are founded on the twin principles of matrices
(usually called Correlation Matrix Memories (CMMs))
and n-tupling. Each matrix accepts m inputs as a vector
or tuple addressing m rows and n outputs as a vector
addressing n columns of the matrix. During the
training phase, the matrix weights Mlk are incremented
if both the input row Ij

l and output column Oj
k are set.

Therefore, training is a single epoch process with one
training step for each input-output association preserving
the high speed. During recall, the presentation of vector
Ij elicits the recall of vector Oj as vector Ij contains all of
the addressing information necessary to access and
retrieve vector Oj. This training and recall makes RAMs
computationally simple and transparent with well-
understood properties. RAMs are also able to partially
match records during retrieval. Therefore, they can
rapidly match records that are close to the input but do
not match exactly.

AURA
AURA has been used in an information retrieval
system[H01], high speed rule matching
systems[AKL95], 3-D structure matching[TA00] and
trademark searching[AA98]. AURA techniques have
demonstrated superior performance with respect to speed
compared to conventional data indexing approaches
[HA01] such as hashing and inverted file lists which may
be used for a decision table body. AURA trains 20 times
faster than an inverted file list and 16 times faster than a
hashing algorithm. It is up to 24 times faster than the
inverted file list for recall and up to 14 times faster than
the hashing algorithm. AURA techniques have
demonstrated superior speed and accuracy compared to
conventional neural classifiers [ZAK99].

The rapid training, computational simplicity, network
transparency and partial match capability of RAM
networks coupled with our robust quantisation and
encoding method to map numeric attributes from the data
set onto binary vectors for training and recall make
AURA ideal to use as the basis of an efficient
implementation. A more formal definition of AURA, its
components and methods now follows.

Correlation Matrix Memories (CMMs) are the building
blocks for AURA systems. AURA uses binary input I
and output O vectors to train records in to the CMM and
recall sets of matching records from the CMM as in
Equation 1 and Figure 1.

Equation 1

ORlogicaliswhereall ∨∨ ×= T
jjj OICMM

Training is a single epoch process with one training step
for each input-output association (each Ij x OT

j in
Equation 1) which equates to one step for each record in
the data set.

Figure 1 Showing a CMM with input vector i and
output vector o. Four matrix locations are set
following training i0o0, i2on-2, im-1o0 and imon.

For the methodology described in this paper, we:
• Train the data set into the CMM (decision

table body CMM) which indexes all records in
the data set and allows them to be matched.

• Select the attributes for the schema using
schema CMMs. We describe two selection
algorithms. One uses a single CMM and the
second algorithm uses two coupled CMMs.

• Match and classify unseen items using the
trained decision table.

Data
For the data sets:

• Symbolic and numerical unordered attributes
are enumerated and each separate token maps
onto an integer (Text � Integer) which
identifies the bit to set within the vector. For
example, a SEX_TYPE attribute would map
as, (F � 0) and (M � 1).

Kohavi’s DTM methodology is principally aimed at
symbolic attributes but the AURA decision table can
handle continuous numeric attributes.

• Any real-valued or ordered numeric attributes,
are quantised (mapped to discrete bins) and
each individual bin maps onto an integer
which identifies the bit to set in the input
vector.

A range of input values for attribute f map onto each
bin which in turn maps to a unique integer to index the
vector as in Equation 2. The range of attribute values
mapping to each bin is equal.

Equation 2

ffkfkfi offsetIntegerbins +→ℜ � where

())(card)(card)(fff binsIntegerFVi ≡∧∈
In Equation 2, offsetf is a cumulative integer offset
within the binary vector for each attribute f and

offsetf+1 = offsetf +nBinsf, where nBinsf is the number of
bins for attribute f,
card is the cardinality,
FVf is the set of attribute values for attribute f,
� is a many-to-one mapping and � is a one-to-one
mapping.

This quantisation (binning) approach aims to subdivide
the attributes uniformly across the range of each
attribute. The range of values is divided into b bins such
that each bin is of equal width. The equal widths of the
bins prevent distortion of the inter-bin distances.

Once the bins and integer mappings have been
determined, we map the records onto binary vectors.
Each attribute maps onto a consecutive section of bits in
the binary vector.

 For each record in the data set
 For each attribute
 Calculate bin for attribute value;
 Set bit in vector as in Equation 2;

Each binary vector represents a record from the data set

Body Training
The decision table body is an index of all contingencies
and the decision to take for each. Input vectors represent
quantised records and form an input Ij to the CMM
during training. The CMM associates the input with a
unique output vector OT

j during training that represents
an equivalence set of records. This produces a CMM
where the rows represent the attributes and their
respective values and the columns represent equivalence
sets of records (where equivalence is determined by the
attributes designated by the schema). We use an array of
linked lists to store the equivalence sets of records and a
second array to store the counts of each class for the
equivalence set as a histogram. The algorithm is:

 1) Input vector to CMM;
 2) Threshold at value nF;
 3) If exact match
 4) Add the record to column list;
 5) Add class to histogram;
 6) Else train record as next column;

nF is the number of attributes. Steps 1 and 2 are
equivalent to testing for an exact match during body
recall as described next. Figure 3 shows a trained CMM
where each row is an attribute value and each column
represents an equivalence set.

Body Recall
The decision table classifies by finding the set of
matching records. To recall the matches for a query
record, we firstly produce an input vector by quantising
the target values for each attribute to identify the bins and
thus CMM rows to activate as in Equation 2. To retrieve

the matching records for a particular record, AURA
effectively calculates the dot product of the input
vector Ik and the CMM, computing a positive integer-
valued output vector Ok (the summed output vector) as
in Equation 3 and Figure 2 & Figure 3.

Equation 3 CMMIO •= k
T
k

The AURA technique thresholds the summed output

T
kO to produce a binary output vector as in Figure 2 for

exact match and Figure 3 for a partial match.

Figure 2 Diagram showing the CMM recall for an
exact match. The left hand column is the input
vector. The dot is the value for each attribute (a
value for an unordered attribute or a bin for an
ordered numeric attribute). AURA multiplies the
input vector by the values in the matrix columns,
using the dot product, sums each column to produce
the summed output vector and then thresholds this
vector at a value equivalent to the number of
attributes in the input (6 here) to produce the
thresholded attribute vector which indicates the
matching column (the middle column here).

For exact match (as in Kohavi’s DTM), we use the
Willshaw threshold. It sets a bit in the thresholded
output vector for every location in the summed output
vector that has a value higher than a threshold value.
The threshold value is set to the number of attributes
nF for an exact match. If there is an exact match there
will be a bit set in the thresholded output vector
indicating the matching equivalence set. It is then
simply a case of looking up the class histogram for this
equivalence set in the stored array and classifying the
record by the majority class in the histogram. If there
are no bits set in the thresholded output vector then we

classify the unseen record according to the majority class
across the data set.

Figure 3 Diagram showing the CMM recall for a
partial match. The left hand column is the input
vector. The dot is the value for each attribute (a value
for an unordered attribute or a bin for an ordered
numeric attribute). AURA multiplies the input vector
by the values in the matrix columns, using the dot
product, sums each column to produce the summed
output vector and then thresholds this vector at a
value equivalent to the highest value in the vector (5
here) to produce the thresholded attribute vector
which indicates the matching column (the middle
column here).

For partial matching, we use the L-Max threshold. L-
Max thresholding essentially retrieves at least L top
matches. It sets a bit in the thresholded output vector for
every location in the summed output vector that has a
value higher than a threshold value. The AURA C++
library automatically sets the threshold value to the
highest integer value that will retrieve at least L matches.
For the AURA decision table, L is set to the value of 1.
There will be a bit set in the thresholded output vector
indicating the best matching equivalence set. It is then
simply a case of looking up the class histogram for this
equivalence set in the stored array and classifying the
unseen record as the majority class. We note there may
be more than one best matching equivalence set so the
majority class across all best matching sets will need to
be calculated.

Schema Training
In the decision table body CMM, the rows represented
attribute values and the columns represented
equivalence sets. In the schema CMM used for the
first attribute selection algorithm, the rows represent
attribute values and the columns represent individual
records. For our second attribute selection algorithm,
we use two CMMs where the first CMM indexes the
second CMM. In the first CMM1, the rows represent
records and the columns represent attribute values. In
the second CMM2, the rows represent attribute values
and the columns represent the records. This second
CMM2 is therefore identical to the CMM used for the
first attribute selection algorithm

During training for the first attribute selection
algorithm and CMM2 of the second attribute selection
algorithm, the input vectors Ij represent the attribute
values in the data records. The CMM associates the
input with a unique output vector OT

j. Each output
vector is orthogonal with a single bit set corresponding
to the record’s position in the data set, the first record
has the first bit set in the output vector, the second and
so on. During training for CMM1, the records
represent the input vectors Ij with a single bit set and
the output vectors OT

j represent the attribute values in
the data records. The CMM training process is given
in Equation 1.

Schema Attribute Selection
As with Kohavi, we assume that all records are to be
used in the body and during attribute selection.

There are two fundamental approaches to attribute
selection which are used in classification: a filter
approach that selects the optimal set of attributes
independently of the classifier algorithm and the
wrapper approach that selects attributes to optimise
classification using the algorithm. We examine two
filter approaches which are more flexible than wrapper
approaches as they are not directly coupled to the
classification algorithm.

For a data set with N attributes there are O(NM)
possible combinations of M attributes which is
intractable to search exhaustively. In the following: we
use one filter approach (mutual information attribute
selection) that examines attributes on an individual
basis and another probabilistic filter approach
(probabilistic Las Vegas algorithm) that examines
randomly selected subsets of attributes.

Mutual Information Attribute Selection
Wettscherek [W94] describes a mutual information
attribute selection algorithm which calculates the

mutual information between class C and each attribute Fj.
The mutual information between two attributes is “the
reduction in uncertainty concerning the possible values
of one attribute that is obtained when the value of the
other attribute is determined”.

For unordered attributes, nFV is the number of distinct
attribute values (fi) for attribute Fj and nClasses the
number of classes (C):

Equation 4

��
==

=•=
=∧=

•=∧==
nClasses

c i

i
nFV

i
pp

p
pI

1 j

j
ij

1

j)fF()cC(

)fFcC(
log)fFcC()FC,(

For ordered numeric attributes, the technique computes
the mutual information between a discrete random
variable (class) and a continuous random variable
(attribute). It estimates the probability function of the
attributes using density estimation. We assume attribute
Fj has density f(x) and the joint density of C and Fj is
f(x,y).

Then the mutual information is:

Equation 5

dx
pxf

xf
xfI

nClasses

cx

��
=

=•
=

•==
1

j)cC()(
)cC,(

log)cC,()FC,(

Equation 5 requires an estimate of the density function
f(x) and the joint density function f(x, C=c). To
approximate f(x) and f(x, C=c), we utilise the binning to
represent the density which is analogous to the
Trapezium Rule for using the areas of slices (trapezia) to
represent the area under the graph for integration. We
use the bins to represent strips of the probability density
function and count the number of records mapping into
each bin to estimate the density.

In AURA, for unordered data, the mutual information is
given by Equation 6:

Equation 6

��
�
�
�

�

�

��
�
�
�

�

�

•

∧•
•

∧•= ��
==

n
nRowf

n

nClass
nRowf

BVcBVfn
n

nRowf

nRowf
BVcBVfn

n
nRowf

I

ic
i

ii

i

ii
nClasses

c

nRowsFV

i

)(

log

)(
)FC,(

11

j

Where nRowsFV is the number of rows in the CMM for
attribute Fj, n is the number of records in the data set,
nRowfi is the number of bits set in row fi of the CMM

(the number of records with attribute value fi), BVfi is a
binary vector (CMM row) for fi, BVc is a binary vector
with one bit set for each record in class c, n(BVfi∧BVc)
is a count of the set bits when BVc is logically anded
with BVfi and nClassc is the number of records in class
c.

In AURA, for real/discrete ordered numeric attributes,
the mutual information is given by Equation 7:

Equation 7

�
�
�
�
�

�

�

�
�
�
�
�

�

�

•

∧•

•

∧•= ��
==

n
nRowb

n

nClass

nRowb
BVcBVbn

n
nRowb

nRowb
BVcBVbn

n
nRowb

I

ic

i

ii

i

ii
nClasses

c

nB

i

)(

log

)(
)FC,(

11

j

Where nB is the number of bins in the CMM for
attribute Fj, n is the number of records in the data set,
nRowbi is the number of bits set in row bi of the CMM
(the number of records that map to bin bi), BVbi is a
binary vector (CMM row) for fi, BVc is a binary vector
with one bit set for each record in class c,
n(BVfi∧BVc) is a count of the set bits when BVc is
logically ANDed with BVbi and nClassc is the number
of records in class c.

The technique assumes independence of attributes and
ignores missing values. It is also the user’s prerogative
to determine the number of attributes to select.

Probabilistic Las Vegas Algorithm
Liu & Setiono [LS96] introduced a probabilistic Las
Vegas algorithm which uses random search and
inconsistency to evaluate attribute subsets. For each
equivalence set of records (where the records match
according to the attributes designated in the schema),
consistency is defined as the number of matching
records minus the largest number of matching records
in any one class. The inconsistency scores are summed
across all equivalence sets to produce an inconsistency
score for the particular attribute selection.

The technique uses random search to select attributes
as random search is less susceptible to local minima
than heuristic searches such as forward search or
backward search. Forward search works by greedily
adding attributes to a subset of selected attributes until
some termination condition is met whereby adding new
attributes to the subset does not increase the
discriminatory power of the subset above a pre-
specified threshold value. Backward search works by
greedily removing attributes from an initial set of all

attributes until some termination condition is met
whereby removing an attribute from the subset decreases
the discriminatory power of the subset above a pre-
specified threshold. A poor attribute choice at the
beginning of a forward or backward search will adversely
effect the final selection whereas a random search will
not rely on any initial choices.

Liu and Setiono defined their algorithm as:

1) nFbest = N;
2) For j = 1 to MAX_TRIES
3) S = randomAttributeSet(seed);
4) nF = numberOfAttributes(S);
5) If(nF < nFbest)
6) If(InconCheck(S,D) < γ)
7) Sbest = S; nFbest = nF;
8) End for

Where D is the dataset, N the number of attributes and γ
the permissible inconsistency score. Liu & Setiono
recommend setting MAX_TRIES to 77xN5.

Figure 4 Showing the two CMM combination we use
for Liu & Setiono’s algorithm. In the first CMM
(CMM1), the records index the rows (one row per
record) and the attribute values index the columns.
The outputs from the CMM (matching attribute
values) feed straight into the second CMM(CMM2),
where the attribute values index the rows and the
records index the columns (one column per record).

Liu and Setiono’s algorithm may be calculated simply
using the AURA schema CMMs. We need to use two
linked CMMs for the calculation as in Figure 4. We
rotate the schema CMM (CMM1)

 through 90º. CMM1’s

rows index the records and CMM1’s columns index the
attribute values. If we feed the outputs from CMM1 (the
activated attribute values) into CMM2 then we can
calculate the inconsistency scores easily. Line 6 of Liu
and Setiono’s algorithm listed above then becomes:

 Place all records in a queue Q;
 While !empty(Q)
 Remove R the head record from Q;
 Activate row R in CMM1;
 Threshold CMM1 at value 1;
 Feed CMM1 output into CMM2;
 Threshold CMM2 at value nF

best;
;

 B = bits set in thresholded_vector;
 Max = cardinality of largest class;
 InconCheck(S,D) += B-Max;
 End while

The queue effectively holds the unprocessed records.
By activating the head record’s row in CMM1 and
Willshaw thresholding at value 1 (denoting all active
columns (i.e., all attribute values in the record)), we
can determine that record’s attribute values. When
these values are fed into CMM2, we effectively activate
all records matching these values. This approach is the
most efficient as the CMMs store all attributes and
their values but we only focus on those attributes under
investigation during each iteration of the algorithm.
An alternative approach would be to just store those
attributes selected in the random subset each time we
execute line 6 of Liu and Setiono’s algorithm but the
CMMs would need to be retrained many times (up to
77xN5).

After thresholding CMM2 at the value nFbest (the
number of attributes), we retrieve the equivalence set
of matching records where equivalence is specified by
the current attribute selection in the algorithm {S}. It
is then simply a matter of counting the number of
matching records (the number of bits set in the
thresholded output vector), calculating the number of
these matching records in each class, identifying the
largest class membership and subtracting the largest
class membership from the number of records.

The algorithm has now processed all of the records in
this equivalence set so it removes these records from
the queue. If we repeat this process for each record at
the head of the queue until the queue is empty, we will
have processed all equivalence sets. We can then
calculate InconCheck(S,D) for this attribute selection
and compare it with the threshold value as in line 6 of
Liu and Setiono’s algorithm.

Once we have iterated through Liu and Setiono’s
algorithm MAX_TRIES times then we have selected
an “optimal” attribute subset. We have not tried all
combinations of all attributes as this is intractable for a
large data set. However, we have made a sufficient
approximation.

Conclusion
In this paper we have introduced a binary neural decision
table classifier. The AURA neural architecture, which
underpins the classifier, has demonstrated superior
training and recall speed compared to conventional
indexing approaches such as hashing or inverted file lists
which may be used for a decision table. AURA trains 20
times faster than an inverted file list and 16 times faster
than a hashing algorithm. It is up to 24 times faster than
the inverted file list for recall and up to 14 times faster
than the hashing algorithm. In this paper, we described
the implementation details of the technique. Our next
step is to evaluate the AURA decision table for speed and
memory usage against a conventional decision table
implementation.

We have shown how two quite different attribute
selection approaches may be implemented within the
AURA decision table framework. We described a
mutual information attribute selector that examines
attributes on an individual basis and scores them
according to their class discrimination ability. We also
demonstrated a probabilistic Las Vegas algorithm which
uses random search and inconsistency to evaluate
attribute subsets.

We feel the technique is flexible and easily extended to
other attribute selection algorithms.

Acknowledgement
This work was supported by EPSRC Grant number
GR/R55101/01.

References
 [AA68] Aleksander, I., & Albrow, R.C. Pattern

recognition with Adaptive Logic Elements. IEE
Conference on Pattern Recognition, pp 68-74,
1968.

[ATB84] Aleksander, I., Thomas, W.V., & Bowden, P.A.
Wisard: A radical step forward in image
recognition. Sensor Review, pp 120-124, 1984.

[AA98] Alwis, S., & Austin, J. A Novel Architecture for
Trademark Image Retrieval Systems. In,
Electronic Workshops in Computing, 1998.

[A95] Austin, J. Distributed Associative Memories for
High Speed Symbolic Reasoning. In, IJCAI
Working Notes of Workshop on Connectionist-
Symbolic Integration: From Unified to Hybrid
Approaches, pp 87-93, 1995.

 [A98] Austin, J. RAM-based Neural Networks,
Progress in Neural Processing 9, Singapore:
World Scientific Pub. Co., 1998.

[AKL95] Austin, J., Kennedy, J., & Lees, K. A Neural

Architecture for Fast Rule Matching. In,
Artificial Neural Networks and Expert Systems
Conference (ANNES’95), Dunedin, New
Zealand, 1995.

[BB59] Bledsoe, W.W., & Browning, I. Pattern
recognition and Reading by Machine. In,
Proceedings of Eastern Joint Computer
Conference, pp 225-231, 1959.

[H01] Hodge, V., Integrating Information Retrieval
& Neural Networks, PhD Thesis,Department of
Computer Science, The University of York,
2001.

[HA01] Hodge, V. & Austin, J. An Evaluation of
Standard Retrieval Algorithms and a Binary
Neural Approach. Neural Networks 14(3), pp.
287-303, Elsevier, 2001.

 [HA04] Hodge, V. & Austin, J. A High Performance
k-NN Approach Using Binary Neural
Networks. Neural Networks 17(3), pp. 441-458,
Elsevier, 2004.

[K95] Kohavi, R.. The Power of Decision Tables. In,
Procs of Eurpean Confernce on Machine
Learning. LNAI 914, Springer-Verlag, pp174-
189, 1995.

[LS96] Liu, H., and Setiono, R. A probabilistic
approach to feature selection - A filter
solution. In, 13th International Conference on
Machine Learning (ICML'96), pp. 319-327,
1996.

[TA00] Turner, A., & Austin, J. Performance
Evaluation of a fast Chemical Structure
Matching Method using Distributed Neural
Relaxation. In, 4th International conference on
Knowledge Based Intelligent Engineering
Systems, 2000.

[W94] Wettscherek, D.. A Study of Distance-Based
Machine Learning Algorithms. PhD Thesis,
Dept of Comp. Sci., Oregon State University,
1994.

[ZAK99] Zhou, P., Austin, J. & Kennedy, J. A High
Performance k-NN Classifier Using a Binary
Correlation Matrix Memory, Advances in
Neural Information Processing Systems, Vol.
11, 1999.

