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Abstract 
In this paper, we introduce a neural network-based 
decision table algorithm.  We focus on the 
implementation details of the decision table algorithm 
when it is constructed using the neural network.  
Decision tables are simple supervised classifiers which, 
Kohavi demonstrated, can outperform state-of-the-art 
classifiers such as C4.5.  We couple this power with the 
efficiency and flexibility of a binary associative-memory 
neural network. We demonstrate how the binary 
associative-memory neural network can form the 
decision table index to map between attribute values and 
data records.  We also show how two attribute selection 
algorithms, which may be used to pre-select the 
attributes for the decision table, can easily be 
implemented within the binary associative-memory 
neural framework.  The first attribute selector uses 
mutual information between attributes and classes to 
select the attributes that classify best.  The second 
attribute selector uses a probabilistic approach to 
evaluate randomly selected attribute subsets. 

Introduction 
Supervised classifier algorithms aim to predict the class 
of an unseen data item.  They induce a hypothesis using 
the training data to map inputs onto classified outputs 
(decisions).  This hypothesis should then correctly 
classify previously unseen data items.  There is a wide 
variety of classifiers including: decision trees, neural 
networks, Bayesian classifiers, Support Vector Machines 
and k-nearest neighbour (k-NN). 
 
We have previously developed a k-NN classifier[HA04] 
using an associative memory neural network called the 
Advanced Uncertain Reasoning Architecture 
(AURA)[A95].  In this paper, we extend the approach to 
encompass a decision table supervised classifier, 
coupling the classification power of the decision table 
with the speed and storage efficiency of an associative 
memory neural network 
 
The decision table has two components: a schema and a 
body.  The schema is the set of attributes pre-selected to 
represent the data and is usually a subset of the data’s 

total attributes.  There are various approaches for 
attribute selection; we discuss two later in this paper.  
The body is essentially a table of labelled data items 
where the attributes specified by the schema form the 
rows and the decisions (classifications) form the 
columns.  Each column is mutually exclusive and 
represents an equivalence set of records as defined by 
the attributes of the schema. Kohavi [K95] uses a 
Decision Table Majority (DTM) for classification 
whereby if an unseen item exactly matches a stored 
item in the body then the decision table assigns the 
stored item’s decision to the unseen item.  However, if 
there is no exact match then the decision table assigns 
the majority class across all items to the unseen item.  
Our decision table approach implements both DTM 
and proximity-based matching as implemented in our 
k-NN classifier whereby if there is no exact match then 
the decision table assigns the class of the nearest stored 
item to the unseen item. 

RAM-based Neural Networks 
The AURA C++ library provides a range of classes and 
methods for rapid partial matching of large data sets 
[A95].  In this paper we define partial matching as the 
retrieval of those stored records that match some or all 
of the input record.  In our AURA decision table, we 
use best partial matching to retrieve the records that are 
the top matches.   
 
AURA belongs to a class of neural networks called 
Random Access Memory (RAM-based) networks.  
RAM-based networks were first developed by Bledsoe 
& Browning [BB59] and Aleksander & Albrow 
[AA68] for pattern recognition and led to the WISARD 
pattern recognition machine  [ATB84].  See also [A98] 
for a detailed compilation of RAM methods.   
 
RAMs are founded on the twin principles of matrices 
(usually called Correlation Matrix Memories (CMMs)) 
and n-tupling. Each matrix accepts m inputs as a vector 
or tuple addressing m rows and n outputs as a vector 
addressing n columns of the matrix.  During the 
training phase, the matrix weights Mlk are incremented 
if both the input row Ij

l and output column  Oj
k are set.  



 

 

Therefore, training is a single epoch process with one 
training step for each input-output association preserving 
the high speed.  During recall, the presentation of vector 
Ij elicits the recall of vector Oj as vector Ij contains all of 
the addressing information necessary to access and 
retrieve vector Oj. This training and recall makes RAMs 
computationally simple and transparent with well-
understood properties. RAMs are also able to partially 
match records during retrieval.  Therefore, they can 
rapidly match records that are close to the input but do 
not match exactly.   

AURA 
AURA has been used in an information retrieval 
system[H01], high speed rule matching 
systems[AKL95], 3-D structure matching[TA00] and 
trademark searching[AA98].  AURA techniques have 
demonstrated superior performance with respect to speed 
compared to conventional data indexing approaches 
[HA01] such as hashing and inverted file lists which may 
be used for a decision table body.  AURA trains 20 times 
faster than an inverted file list and 16 times faster than a 
hashing algorithm.  It is up to 24 times faster than the 
inverted file list for recall and up to 14 times faster than 
the hashing algorithm.  AURA techniques have 
demonstrated superior speed and accuracy compared to 
conventional neural classifiers [ZAK99].   
 
The rapid training, computational simplicity, network 
transparency and partial match capability of RAM 
networks coupled with our robust quantisation and 
encoding method to map numeric attributes from the data 
set onto binary vectors for training and recall make 
AURA ideal to use as the basis of an efficient 
implementation.  A more formal definition of AURA, its 
components and methods now follows. 
 
Correlation Matrix Memories (CMMs) are the building 
blocks for AURA systems.  AURA uses binary input I 
and output O vectors to train records in to the CMM and 
recall sets of matching records from the CMM as in 
Equation 1 and Figure 1. 

Equation 1    
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Training is a single epoch process with one training step 
for each input-output association (each Ij x OT

j in 
Equation 1) which equates to one step for each record in 
the data set.  
 

 
Figure 1 Showing a CMM with input vector i and 
output vector o.  Four matrix locations are set 
following training i0o0, i2on-2, im-1o0 and imon. 

For the methodology described in this paper, we: 
• Train the data set into the CMM (decision 

table body CMM) which indexes all records in 
the data set and allows them to be matched.   

• Select the attributes for the schema using 
schema CMMs.  We describe two selection 
algorithms.  One uses a single CMM and the 
second algorithm uses two coupled CMMs. 

• Match and classify unseen items using the 
trained decision table.    

Data 
For the data sets:  

• Symbolic and numerical unordered attributes 
are enumerated and each separate token maps 
onto an integer (Text � Integer) which 
identifies the bit to set within the vector.  For 
example, a SEX_TYPE attribute would map 
as, (F � 0) and (M � 1).  

Kohavi’s DTM methodology is principally aimed at 
symbolic attributes but the AURA decision table can 
handle continuous numeric attributes.   

• Any real-valued or ordered numeric attributes, 
are quantised (mapped to discrete bins) and 
each individual bin maps onto an integer 
which identifies the bit to set in the input 
vector. 

A range of input values for attribute f map onto each 
bin which in turn maps to a unique integer to index the 
vector as in Equation 2.  The range of attribute values 
mapping to each bin is equal. 

Equation 2 

ffkfkfi offsetIntegerbins +→ℜ �  where 

( ))(card)(card)( fff binsIntegerFVi ≡∧∈   
In Equation 2, offsetf is a cumulative integer offset 
within the binary vector for each attribute f and 



 

 

offsetf+1 = offsetf +nBinsf, where nBinsf  is the number of 
bins for attribute f, 
card is the cardinality, 
FVf is the set of attribute values for attribute f, 
� is a many-to-one mapping and �  is a one-to-one 
mapping. 
 
This quantisation (binning) approach aims to subdivide 
the attributes uniformly across the range of each 
attribute.  The range of values is divided into b bins such 
that each bin is of equal width.  The equal widths of the 
bins prevent distortion of the inter-bin distances.  
 
Once the bins and integer mappings have been 
determined, we map the records onto binary vectors. 
Each attribute maps onto a consecutive section of bits in 
the binary vector.   

  For each record in the data set  
    For each attribute  
      Calculate bin for attribute value; 
      Set bit in vector as in Equation 2;  

Each binary vector represents a record from the data set  

Body Training 
The decision table body is an index of all contingencies 
and the decision to take for each. Input vectors represent 
quantised records and form an input Ij to the CMM 
during training. The CMM associates the input with a 
unique output vector OT

j during training that represents 
an equivalence set of records.  This produces a CMM 
where the rows represent the attributes and their 
respective values and the columns represent equivalence 
sets of records (where equivalence is determined by the 
attributes designated by the schema).  We use an array of 
linked lists to store the equivalence sets of records and a 
second array to store the counts of each class for the 
equivalence set as a histogram.  The algorithm is:  

  1) Input vector to CMM;  
  2) Threshold at value nF; 
  3)   If exact match  
  4)     Add the record to column list; 
  5)     Add class to histogram; 
  6)   Else train record as next column;  

nF  is the number of attributes.  Steps 1 and 2 are 
equivalent to testing for an exact match during body 
recall as described next.  Figure 3 shows a trained CMM 
where each row is an attribute value and each column 
represents an equivalence set. 

Body Recall 
The decision table classifies by finding the set of 
matching records.  To recall the matches for a query 
record, we firstly produce an input vector by quantising 
the target values for each attribute to identify the bins and 
thus CMM rows to activate as in Equation 2.  To retrieve 

the matching records for a particular record, AURA 
effectively calculates the dot product of the input 
vector Ik and the CMM, computing a positive integer-
valued output vector Ok (the summed output vector) as 
in Equation 3 and Figure 2 & Figure 3.  
 

Equation 3 CMMIO •= k
T
k  

 
The AURA technique thresholds the summed output 

T
kO  to produce a binary output vector as in Figure 2 for 

exact match and Figure 3 for a partial match. 
 

 
Figure 2 Diagram showing the CMM recall for an 
exact match.  The left hand column is the input 
vector.  The dot is the value for each attribute (a 
value for an unordered attribute or a bin for an 
ordered numeric attribute).  AURA multiplies the 
input vector by the values in the matrix columns, 
using the dot product, sums each column to produce 
the summed output vector and then thresholds this 
vector at a value equivalent to the number of 
attributes in the input (6 here) to produce the 
thresholded attribute vector which indicates the 
matching column (the middle column here). 

For exact match (as in Kohavi’s DTM), we use the 
Willshaw threshold.  It sets a bit in the thresholded 
output vector for every location in the summed output 
vector that has a value higher than a threshold value. 
The threshold value is set to the number of attributes 
nF for an exact match.  If there is an exact match there 
will be a bit set in the thresholded output vector 
indicating the matching equivalence set.   It is then 
simply a case of looking up the class histogram for this 
equivalence set in the stored array and classifying the 
record by the majority class in the histogram.  If there 
are no bits set in the thresholded output vector then we 



 

 

classify the unseen record according to the majority class 
across the data set. 
            

 
Figure 3 Diagram showing the CMM recall for a 
partial match.  The left hand column is the input 
vector.  The dot is the value for each attribute (a value 
for an unordered attribute or a bin for an ordered 
numeric attribute).  AURA multiplies the input vector 
by the values in the matrix columns, using the dot 
product, sums each column to produce the summed 
output vector and then thresholds this vector at a 
value equivalent to the highest value in the vector (5 
here) to produce the thresholded attribute vector 
which indicates the matching column (the middle 
column here). 

For partial matching, we use the L-Max threshold. L-
Max thresholding essentially retrieves at least L top 
matches.  It sets a bit in the thresholded output vector for 
every location in the summed output vector that has a 
value higher than a threshold value. The AURA C++ 
library automatically sets the threshold value to the 
highest integer value that will retrieve at least L matches.  
For the AURA decision table, L is set to the value of 1.  
There will be a bit set in the thresholded output vector 
indicating the best matching equivalence set.   It is then 
simply a case of looking up the class histogram for this 
equivalence set in the stored array and classifying the 
unseen record as the majority class.  We note there may 
be more than one best matching equivalence set so the 
majority class across all best matching sets will need to 
be calculated. 

Schema Training 
In the decision table body CMM, the rows represented 
attribute values and the columns represented 
equivalence sets.  In the schema CMM used for the 
first attribute selection algorithm, the rows represent 
attribute values and the columns represent individual 
records.  For our second attribute selection algorithm, 
we use two CMMs where the first CMM indexes the 
second CMM.  In the first CMM1, the rows represent 
records and the columns represent attribute values.  In 
the second CMM2, the rows represent attribute values 
and the columns represent the records.  This second 
CMM2 is therefore identical to the CMM used for the 
first attribute selection algorithm 
 
During training for the first attribute selection 
algorithm and CMM2 of the second attribute selection 
algorithm, the input vectors Ij represent the attribute 
values in the data records.  The CMM associates the 
input with a unique output vector OT

j.  Each output 
vector is orthogonal with a single bit set corresponding 
to the record’s position in the data set, the first record 
has the first bit set in the output vector, the second and 
so on.  During training for CMM1, the records 
represent the input vectors Ij with a single bit set and 
the output vectors OT

j represent the attribute values in 
the data records.   The CMM training process is given 
in Equation 1. 

Schema Attribute Selection 
As with Kohavi, we assume that all records are to be 
used in the body and during attribute selection.   
 
There are two fundamental approaches to attribute 
selection which are used in classification: a filter 
approach that selects the optimal set of attributes 
independently of the classifier algorithm and the 
wrapper approach that selects attributes to optimise 
classification using the algorithm.  We examine two 
filter approaches which are more flexible than wrapper 
approaches as they are not directly coupled to the 
classification algorithm.   
 
For a data set with N attributes there are O(NM) 
possible combinations of M attributes which is 
intractable to search exhaustively.  In the following: we 
use one filter approach (mutual information attribute 
selection) that examines attributes on an individual 
basis and another probabilistic filter approach 
(probabilistic Las Vegas algorithm) that examines 
randomly selected subsets of attributes. 

Mutual Information Attribute Selection  
Wettscherek [W94] describes a mutual information 
attribute selection algorithm which calculates the 



 

 

mutual information between class C and each attribute Fj. 
The mutual information between two attributes is “the 
reduction in uncertainty concerning the possible values 
of one attribute that is obtained when the value of the 
other attribute is determined”.  
 
For unordered attributes, nFV is the number of distinct 
attribute values (fi) for attribute Fj and nClasses the 
number of classes (C): 

Equation 4 

��
==

=•=
=∧=

•=∧==
nClasses

c i

i
nFV

i
pp

p
pI

1 j

j
ij

1

j )fF()cC(

)fFcC(
log)fFcC()FC,(  

For ordered numeric attributes, the technique computes 
the mutual information between a discrete random 
variable (class) and a continuous random variable 
(attribute).  It estimates the probability function of the 
attributes using density estimation.  We assume attribute 
Fj has density f(x) and the joint density of C and Fj is 
f(x,y).   

Then the mutual information is: 

Equation 5 
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Equation 5 requires an estimate of the density function 
f(x) and the joint density function f(x, C=c).  To 
approximate f(x) and f(x, C=c), we utilise the binning to 
represent the density which is analogous to the 
Trapezium Rule for using the areas of slices (trapezia) to 
represent the area under the graph for integration.  We 
use the bins to represent strips of the probability density 
function and count the number of records mapping into 
each bin to estimate the density. 
 
In AURA, for unordered data, the mutual information is 
given by Equation 6: 

Equation 6 
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Where nRowsFV is the number of rows in the CMM for 
attribute Fj, n is the number of records in the data set,  
nRowfi is the number of bits set in row fi of the CMM 

(the number of records with attribute value fi), BVfi is a 
binary vector (CMM row) for fi, BVc is a binary vector 
with one bit set for each record in class c,  n(BVfi∧BVc) 
is a count of the set bits when BVc is logically anded 
with BVfi and nClassc is the number of records in class 
c. 
 
In AURA, for real/discrete ordered numeric attributes, 
the mutual information is given by  Equation 7: 

Equation 7 
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Where nB is the number of bins in the CMM for 
attribute Fj, n is the number of records in the data set, 
nRowbi is the number of bits set in row bi of the CMM 
(the number of records that map to bin bi),  BVbi is a 
binary vector (CMM row) for fi, BVc is a binary vector 
with one bit set for each record in class c,   
n(BVfi∧BVc) is a count of the set bits when BVc is 
logically ANDed with BVbi and nClassc is the number 
of records in class c. 
 
The technique assumes independence of attributes and 
ignores missing values.  It is also the user’s prerogative 
to determine the number of attributes to select. 

Probabilistic Las Vegas Algorithm  
Liu & Setiono [LS96] introduced a probabilistic Las 
Vegas algorithm which uses random search and 
inconsistency to evaluate attribute subsets.  For each 
equivalence set of records (where the records match 
according to the attributes designated in the schema), 
consistency is defined as the number of matching 
records minus the largest number of matching records 
in any one class.  The inconsistency scores are summed 
across all equivalence sets to produce an inconsistency 
score for the particular attribute selection.   
 
The technique uses random search to select attributes 
as random search is less susceptible to local minima 
than heuristic searches such as forward search or 
backward search.  Forward search works by greedily 
adding attributes to a subset of selected attributes until 
some termination condition is met whereby adding new 
attributes to the subset does not increase the 
discriminatory power of the subset above a pre-
specified threshold value.   Backward search works by 
greedily removing attributes from an initial set of all 



 

 

attributes until some termination condition is met 
whereby removing an attribute from the subset decreases 
the discriminatory power of the subset above a pre-
specified threshold.  A poor attribute choice at the 
beginning of a forward or backward search will adversely 
effect the final selection whereas a random search will 
not rely on any initial choices. 
 
Liu and Setiono defined their algorithm as: 

1)   nFbest = N; 
2)   For j = 1 to MAX_TRIES 
3)     S = randomAttributeSet(seed);  
4)     nF = numberOfAttributes(S); 
5)     If(nF < nFbest) 
6)       If(InconCheck(S,D) < γ) 
7)         Sbest = S; nFbest = nF; 
8)   End for 

Where D is the dataset, N the number of attributes and γ 
the permissible inconsistency score.  Liu & Setiono 
recommend setting MAX_TRIES to 77xN5. 

 
Figure 4 Showing the two CMM combination we use 
for Liu & Setiono’s algorithm.  In the first CMM 
(CMM1), the records index the rows (one row per 
record) and the attribute values index the columns.  
The outputs from the CMM (matching attribute 
values) feed straight into the second CMM(CMM2),  
where the attribute values index the rows and the 
records index the columns (one column per record). 

Liu and Setiono’s algorithm may be calculated simply 
using the AURA schema CMMs.  We need to use two 
linked CMMs for the calculation as in Figure 4.  We 
rotate the schema CMM (CMM1)

 through 90º. CMM1’s 

rows index the records and CMM1’s columns index the 
attribute values.  If we feed the outputs from CMM1 (the 
activated attribute values) into CMM2 then we can 
calculate the inconsistency scores easily.  Line 6 of Liu 
and Setiono’s algorithm listed above then becomes: 

   

  Place all records in a queue Q; 
  While !empty(Q) 
    Remove R the head record from Q; 
    Activate row R in CMM1; 
    Threshold CMM1 at value 1; 
    Feed CMM1 output into CMM2; 
    Threshold CMM2 at value nF

best;
;    

    B = bits set in thresholded_vector; 
    Max = cardinality of largest class; 
    InconCheck(S,D) += B-Max; 
  End while 
 
The queue effectively holds the unprocessed records.  
By activating the head record’s row in CMM1 and 
Willshaw thresholding at value 1 (denoting all active 
columns (i.e., all attribute values in the record)), we 
can determine that record’s attribute values.  When 
these values are fed into CMM2, we effectively activate 
all records matching these values.  This approach is the 
most efficient as the CMMs store all attributes and 
their values but we only focus on those attributes under 
investigation during each iteration of the algorithm.  
An alternative approach would be to just store those 
attributes selected in the random subset each time we 
execute line 6 of Liu and Setiono’s algorithm but the 
CMMs would need to be retrained many times (up to 
77xN5). 
 
After thresholding CMM2 at the value nFbest (the 
number of attributes), we retrieve the equivalence set 
of matching records where equivalence is specified by 
the current attribute selection in the algorithm {S}.  It 
is then simply a matter of counting the number of 
matching records (the number of bits set in the 
thresholded output vector), calculating the number of 
these matching records in each class, identifying the 
largest class membership and subtracting the largest 
class membership from the number of records.   
 
The algorithm has now processed all of the records in 
this equivalence set so it removes these records from 
the queue.  If we repeat this process for each record at 
the head of the queue until the queue is empty, we will 
have processed all equivalence sets.  We can then 
calculate InconCheck(S,D) for this attribute selection 
and compare it with the threshold value as in line 6 of 
Liu and Setiono’s algorithm. 
 
Once we have iterated through Liu and Setiono’s 
algorithm MAX_TRIES times then we have selected 
an “optimal” attribute subset.  We have not tried all 
combinations of all attributes as this is intractable for a 
large data set.  However, we have made a sufficient 
approximation. 
 



 

 

Conclusion 
In this paper we have introduced a binary neural decision 
table classifier.  The AURA neural architecture, which 
underpins the classifier, has demonstrated superior 
training and recall speed compared to conventional 
indexing approaches such as hashing or inverted file lists 
which may be used for a decision table.  AURA trains 20 
times faster than an inverted file list and 16 times faster 
than a hashing algorithm.  It is up to 24 times faster than 
the inverted file list for recall and up to 14 times faster 
than the hashing algorithm.  In this paper, we described 
the implementation details of the technique.  Our next 
step is to evaluate the AURA decision table for speed and 
memory usage against a conventional decision table 
implementation. 
 
We have shown how two quite different attribute 
selection approaches may be implemented within the 
AURA decision table framework.  We described a 
mutual information attribute selector that examines 
attributes on an individual basis and scores them 
according to their class discrimination ability.  We also 
demonstrated a probabilistic Las Vegas algorithm which 
uses random search and inconsistency to evaluate 
attribute subsets. 
 
We feel the technique is flexible and easily extended to 
other attribute selection algorithms.  
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