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Abstract 
This paper presents a binary neural network algorithm for short-term traffic flow prediction. 
The algorithm can process both univariate and multivariate data from a single traffic sensor 
using time series prediction (temporal lags) and can combine information from multiple traffic 
sensors with time series prediction ( spatial-temporal lags). The algorithm provides Intelligent 
Decision Support (IDS) for road network managers to proactively manage problems on the 
network as the predictions generated may be used to determine if traffic control interventions 
need to be applied.  The algorithm can operate in near-real-time and dynamically; using data 
from UTC or UTMC systems. It is based on the Advanced Uncertain Reasoning Architecture 
(AURA) k-nearest neighbour prediction algorithm, which is designed for scalability and fast 
performance. The AURA k-NN predictor outperforms other machine learning techniques with 
respect to prediction accuracy and is able to train and predict rapidly. The basic AURA k-NN 
time series prediction algorithm was extended by incorporating average daily profiles and 
variable weighting into the prediction in this paper. The average daily profile of a variable is 
calculated as the average reading of the variable for a particular time of day and day of the 
week after removing outliers. When data vectors are matched in the AURA k-NN, the daily 
profile adds an extra dimension to the match. This process was further enhanced by 
weighting the profile using variable weighting to vary the profile’s significance. It is shown 
that incorporating these two additional aspects improves the accuracy of the prediction 
compared to the standard AURA k-NN, resulting in a very fast and accurate traffic prediction 
tool 
 
Introduction 

Road network management in the UK involves manual traffic monitoring and intervention 
implementation to supplement timetabled or automated traffic control systems. For example, 
the UK motorway network is monitored and controlled by the National Traffic Control Centre 
(Highways Agency 2009) and the road network in counties and cities is monitored and 
controlled by the traffic control centres run by respective authorities, e.g. London Traffic 
Control Centre (Barton 2004). The network operators pinpoint traffic problems, determine the 
likely cause of a problem and then select the most appropriate intervention to both manage 
the traffic network and mitigate the congestion. Such intervention measures are often based 
on the operational experience of the person handling the problem. 

Intelligent Decision Support (IDS) systems aim to provide “intelligence” to help network 
operators with good decision making. Historically they provide a supportive role rather than 
entirely replacing humans in the decision-making process (Gorry and Scott-Morton, 1971). 
IDS systems have been developed incorporating knowledge from a broad spectrum of 
domains such as expert systems, artificial intelligence, database technologies and data 
mining and knowledge discovery (Turban and Aronson, 1997). The aim of this work is to 
produce an IDS system to assist road network operators in traffic management, developed as 
a part of the FREEFLOW Project (Glover et al., 2008).  The proposed system can 
complement existing control systems such as SCOOT (Hunt et at., 1981) and SCATS and 
provide recommendations and short-term predictions to the operators, helping them to 
choose the best course of action. This paper focuses on the prediction component of the IDS 
system.  
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The remainder of the paper: provides a concise review of traffic prediction methods, presents 
the proposed binary neural network predictor, provides an evaluation of the predictor with and 
without the enhancements proposed, the results of this evaluation are analysed and 
conclusions are provided. 

 
 
Short-term Traffic Prediction 

The objective of the work in this paper was to predict future traffic variable values over short 
term intervals. The predicted value may then be either displayed to the traffic operator to allow 
them to visualise how the predicted value will develop over the near future or to select the 

best course of action. Traffic monitoring systems generate a large amount of near-real-time 
and historic traffic data from various sensors and systems at any given Local Authority (LA) at 
frequent intervals. Traditional data management technologies such as relational databases 
would be too slow for an on-line IDS that requires near real-time processing to generate the 
predictions between data collections. Also, the traffic data are often non-stationary so any 
predictor needs to be able to process non-stationary data while still maintaining fast, flexible 
processing. Lastly, the predictor should be able to provide accurate multi-step ahead 
predictions. 

Short-term prediction algorithms can broadly be classified into univariate and multivariate 
approaches. Simple univariate prediction models predict the future value of a single variable 
as a function of the same variable observed in the (immediate) past. Ding et al. (2002) used 
support vector machines (Vapnik, 1995) to model future traffic flows. The ARIMA 
methodology (Box and Jenkins, 1976) is a popular statistical technique for time series 
prediction. Hamed and Al-Masaeid (1995) used an ARIMA(0,1,1) model to predict 1 minute 
ahead traffic flows. Williams and Hoel (2003) added seasonal differencing to their ARIMA 
model to predict flows using a seasonal periodicity of 1 week. More recently, Ghosh et al. 
(2007) used a seasonal ARIMA model calibrated using Bayesian methods to predict traffic 
flows. However, ARIMA has high computational complexity and requires time consuming 
optimisation and conventional ARIMA assumes that the data series is stationary. Detailed 
statistical knowledge is required to determine the order of the ARIMA model that provides 
the most accurate prediction, and this is usually done manually. Automating this process will 
require time consuming optimisation which makes it unsuitable for online applications, since 
the optimal model specification may vary based on traffic conditions (e.g. presence of 
incidents).  

In contrast to the univariate techniques, a multivariate approach can use data from several 
traffic sensor locations to generate the prediction as well as multiple traffic variables from a 
single sensor, potentially providing more accurate prediction results. Kamarianakis and 
Prastacos (2003) introduced a spatio-temporal extension of ARIMA to predict future traffic 
flows as a function of historical flows from a given sensor location and its upstream 
neighbours, which has the drawback of ARIMA models described above. 

Various neural networks are used in the literature for multivariate traffic prediction. However, 
many neural networks require intensive tuning to ensure optimal performance. In an IDS 
system, the neural network would have to be retrained, probably daily to maintain an up-to-
date model, which introduces high computational complexity. For example, Vlahogianni et al. 
(2005) demonstrated a genetic algorithm for optimising the parameters of Multi-Layer 
Perceptrons (MLPs). This limits the application of neural networks for online IDS applications. 

Kindzerske and Ni (2007) applied the k-NN algorithm to time series prediction by representing 
the road network state as a vector and comparing this vector against historical stored vectors. 
The best matching stored vectors were then used to generate a prediction. Gibbens and 
Saacti (2006) and Krishnan and Polak (2008) added temporal lag in their k-NN based 
approaches so the vectors incorporated time series. To summarise, traffic prediction models 
need to: (1) accurately model historical traffic patterns, (2) account for the day-to-day 
variability in traffic variables (handle non-stationarity), (3) be able to incorporate both 
temporally and spatially distributed information, where appropriate,(4) run in near-real time 
between data collections and (5) able to make multi-step ahead prediction. 
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The k-NN approach satisfies all the requirements for an online predictor for IDS. K-NN can 
naturally incorporate spatially and temporally lagged variables. The method does not require 
frequent re-calibration. However, the k-NN method when implemented using traditional 
relational database management technologies, is computationally slow for large datasets. The 
neural network-based k-NN predictor, AURA k-NN, is computationally efficient and is able to 
overcome this problem; the method is up to four times faster than the standard k-NN (Hodge 
et al., 2005). The AURA k-NN can predict future traffic flows by matching time series against a 
set of historical time series and using the matches to extrapolate and predict; the 
methodology satisfies the five criteria above (Hodge et al., 2010b). The AURA k-NN can 
process a broad spectrum of traffic data variables such as data from vehicle counts, vehicle 
speeds, bus timetable adherence, congestion metrics, roadworks data, events data and 
weather data. This paper further develops the AURA k-NN to improve prediction accuracy by 
incorporating average daily profiles into the data vectors and variable weighting for the profile 
variables. 

 
Binary Neural Network for prediction 

The objective for the predictor algorithm is to accurately predict the future traffic variable 
values to allow an operator to visualise how the traffic state will develop or to select the best 
course of action. Conceptually, the AURA k-NN identifies a set of historical time periods when 
the set of traffic observations on the road network were most similar to the current set of 
observations. The method then uses these matches to extrapolate and produce a prediction 
of the future traffic value by averaging the variable value across the set of matches. The 
AURA k-NN for prediction is described next. 

 
AURA k-NN 

AURA is a library of methods based upon binary neural networks. It is designed for high 
speed search and matching operations in large data sets and is fast, scalable and compact. 
The foundation of AURA is the binary Correlation Matrix Memory (CMM), a binary matrix used 
to store and retrieve patterns (Austin et al., 1998). In the AURA k-NN (Hodge and Austin, 
2005; Hodge et al., 2010a; Krishnan et al., 2010a; Krishnan et al., 2010b), each column of the 
CMM is a set of variable observations (pattern) and each row indexes a variable value or a 
quantised range of values. This approach was extended to match time series vectors and 
then to generate multivariate predictions (Hodge et al., 2010b). The AURA k-NN is developed 
further here by incorporating an additional variable, the average daily profile and by weighting 
the profile to vary the profile’s influence on the overall match to improve prediction accuracy. 

 
Time Series 

For time series prediction, the system must incorporate a time component. A description of 
how the AURA k-NN accommodates temporal data aspects is given next. 

Given the current set of traffic variable values as a vector Xn, and a dataset of past vectors 
{X}, k-NN identifies the k nearest neighbours of Xn in {X} using a distance metric. The data 
vectors are time-series representations of both sensor readings and sensor average daily 
profiles: both single sensors (univariate data) and spatially-distributed sets of sensors. To 
produce the time series, the AURA k-NN predictor effectively buffers the historical sensor data 
and average daily profiles and accumulates data for a preset time interval PT. Buffering 
always preserves the temporal ordering of the data. Thus, Buffer = {Buffert: t ε PT}. Then the 
time-series for Xn, which we call Xn

TS,
 is as given in equation 1: 

Xn
TS

 = {x1t-3, x1t-2, x1t-1, x1t, x2t-3, x2t-2,…,xnt-3, xnt-2, xnt-1, xnt}      (1) 

for PT of four time slices {t-3, t-2, t-1, t}. The number of time slices, or temporal lags,will vary 
as appropriate. 

For example, for two 2 variable sensors where sensor1 has readings of 41, 62, 55, 68 for 
variable1 and readings of 15.0, 31.0, 25.0, 45.0 for variable2 for four time slices {t-3, t-2, t-1, 
t} respectively and sensor2 has readings of 38, 38, 66, 68 and readings of 14.0, 14.0, 35.0, 
45.0 respectively for four time slices then Xn

TS
 becomes equation 2:  



Hodge, Krishnan, Jackson, Austin & Polak: 
Prediction Using a Binary Neural Network 

January 2011  
Open University, 
Milton Keynes 

UTSG  

 

 

 
2 

Xn
TS

 = {41, 62, 55, 68, | 15.0, 31.0, 25.0, 45.0, | 38, 38, 66, 68, | 14.0, 13.0, 35.0, 45.0}  (2) 

where the vertical bars illustrate the sections of the pattern with each section representing 
the time series for one variable. 

 
Learning in the AURA k-NN 

CMMs learn associations between input patterns and output patterns. The input pattern (In) 
represents the set of all variable values for a particular set of observations and indexes CMM 
matrix rows. The output pattern (On) indexes the matrix columns and uniquely identifies that 
record. There is one input-output association for each record n in the data set of N records.  

CMMs learn binary patterns as the matrices are optimised for compactness and speed so 
numeric variables must be quantised (binned) to allow mapping to a binary pattern (Hodge 
and Austin, 2005). In AURA, quantisation maps observations of a continuous variable into a 
set of discrete values or bins. Each variable is quantised over its entire range of values to a 
set of bins where each bin indexes a specific and unique row in the CMM. For example, for an 
integer-valued variable with range 0-99 and 5 bins then each bin would have width 20: bin0 
holds the variable values {0..19} and would index CMM row 0, bin1 stores {20..39} …bin4 
holds {80..99} and would index CMM row 4. For a real-valued variable with range [0.0-100.0] 
and 5 bins then each bin would have width 20. Thus, for sensor1 and sensor2 above, the set 
of bin mappings (bin indices for each variable value) for Xn

TS
 are given in equation 3: 

Bins(Xn
TS

) = {2, 3, 2, 3, | 0, 0, 1, 2, | 1, 1, 3, 3, | 0, 0, 1, 2}      (3) 

To produce the input pattern In, each bin index in equation 3 maps to a binary representation. 
For a variable with five bins, the five binary representations are then bin0 = 00001, bin1 = 
00010, bin2 = 00100 etc. Thus, the bins corresponding to the values in Xn

TS
 in historic data 

record {X
TS

} are marked 1 while the other bins are marked 0 in In. The binary representations 
for all the variables and their respective time slices in the original data vector are 
concatenated to create the binary pattern In as given in equation 4 which is the binary 
representation of the bin mappings in equation 3. The binary representation is a learning 
pattern to be stored in the CMM to allow the particular data to be stored and retrieved. 

In = {00100 01000 00100 01000 | 00001 00001 00010 00100 | 00010 … }   (4) 

The storage structure consisting of binary patterns, as in equation 4, for all N observations in 
the data set {X

TS
} is called a Correlation Matrix Memory (CMM). Training the CMM is a one-

pass process with one training step for each binary input pattern in the data set so training is 
rapid. Each binary pattern In is associated with a unique identifier pattern On which has a 
single bit set to index a unique column in the CMM as given in equation 5. This column thus 
indexes the binary pattern In. 

ORlogicaliswheren   all ∨∨ ×=
T
nn OICMM         (5) 

 
Retrieving the best matches using the AURA k-NN 

For k-nearest neighbour prediction, the CMM is searched to find the k best matches to be 
used for generating the prediction. The retrieval pattern R is created for each new query Xq

TS
, 

using a set of parabolic kernels, with one kernel for each time slice (t ε PT) within each 
variable x in Xq

TS
. The kernels emulate Euclidean distance (Hodge and Austin, 2005). For 

each time slice for a particular variable, the kernels are identical but they may vary across 
variables according to the number of quantisation bins assigned to that variable. In this paper, 
all variables use an equal number of bins and, hence, an equivalent kernel. To implement 
variable weighting during retrieval, the height of a particular variable’s kernel is varied using a 
weighting factor ωx. This is applied uniformly across all time slices for that variable. For 
example, a weight of 2 doubles the height of the kernels so all time slices for that variable are 
then assigned weight 2. The kernel density is estimated using equation 6 for all time slices t ε 
PT and an example kernel is shown in Figure 1.  
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Where, max(b) is the maximum number of bins for any variable, |bin(xnt
q
) – bin(xnt

h
)| is the 

number of bins separating the bin mapped to by the variable value for this time slice for the 
query pattern (xnt

q
) from the bin mapped to by the variable value for this time slice for the 

stored historical pattern (xnt
h
), and b(xnt) is the total number of bins for variable xn and time 

slice t.  

 

Figure 1. Showing the kernel generated from equation 6 to approximate Euclidean 
Distance for a variable using 11 quantisation bins and weight 1. 

During retrieval, the kernels for all variables are concatenated with each kernel centred on the 
bin representing the variable value for the query record so that bin receives the highest score 
from the kernel. Thus the best matching historical records (CMM columns) will receive the 
highest scores. Using the example above, for an integer-valued variable with range 0-99 and 
5 bins then each bin would have width 20: bin0 {0..19}, bin1 {20..39} …bin4 {80..99}. Thus, if 
the query value was 31, this would map to bin1 so the input pattern element representing bin1 
(indexing from 0) would be the centre of the kernel. Thus, the highest value for this kernel 
(analogous to the dotted value of the kernel in Figure 1) would be centred on bin1. 

This kernel concatenation emulates the scoring of Euclidean Distance. Thus the pattern input 
to the CMM to retrieve the top k matches is iteratively given by equation 7: 

( )    attributes all for xKerneloffsetRR x ,' ⊕=         (7) 

where offset() indexes variable x’s section of the input pattern R and ensures that the kernel is 
applied to R, centred on the query value for variable x. Thus, each variable indexes a defined 
set of elements in R.  

When R is applied to the CMM to retrieve the k best matches, the values in R multiply the 
rows of the matrix as shown in Figure 2. If the bit is set to one in a particular column, then the 
column will receive the kernel score for the corresponding row as given in equations 7 and 8. 
The process is illustrated in Figure 2. For the variable time slice Loop_1_Flow_t-3, columns 1 
and 2 (indexing from 0 on the left) receive a score of 9 as the set bit in the respective columns 
aligns with the score of 9 in the input pattern R. In contrast, the rightmost column receives a 
score of 5 as the set bit in the right column aligns with the score of 5 in the input pattern R.  
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Figure 2. Illustrating the application of kernels to CMM to find the k-nearest 
neighbours using time-series vectors with all weighting factors set to 1. 

To retrieve the k best matching records, the columns of the matrix are summed according to 
the value on the rows indexed by the query input pattern R and the CMM produces a summed 
output vector S as given in equation 8.  

∑ •= CMMRS
T               (8)  

The summed output vector is then thresholded using L-Max thresholding to produce a binary 
thresholded vector T. L-Max thresholding is used in the AURA k-NN as it retrieves the top L 
matching columns. T effectively lists the top L matching columns thus identifying the top k 
(where k=L) matches, i.e. the k nearest neighbour data records. An illustration of this process 
is shown in Figure 2. 

 
Prediction using the AURA k-NN 

The basic AURA k-NN time series prediction algorithm is extended by incorporating average 
daily profiles and variable weighting into the prediction. The average daily profile of a 
variable is the average reading of the variable for a particular time of day and day of the 
week after removing outliers. Gibbens and Saacti (2006) discovered that using only this 
historical average for prediction performed poorly compared to using a k-NN predictor. 
However, we incorporated the historical average of the sensor to be predicted into the k-NN 
prediction. The daily profile adds an extra dimension to the match so in equation 1, Xn

TS 

contains an extra Buffer representing the historical profile. The AURA k-NN is further 
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enhanced by weighting the profile using variable weighting, as described in equation 6, to 
vary the profile’s significance during matching. 

For the prediction task in this paper using data arriving at 15 minute intervals, the AURA k-NN 
retrieves the k top matches and then identifies the t+1 (+15 minute) or t+4 (+1 hour) sensor 
values for each of the k matches. The t+1 (+15 minute) prediction is then the mean value of 
the set of t+1 values from the k nearest neighbours and the t+4 (+1 hour) prediction is the 
mean of the t+4 values. For the 5 minute data, we use t+1 (+5 minutes) and t+12 (+1 hour). 

 
Evaluation 

To evaluate the prediction error, various configurations of the AURA k-NN predictor are 
assessed against each other using the metric in equation 9. The best performing AURA k-NN 
configurations for data sets 1 and 2 were determined previously (see Hodge et al., 2010b). 
Therefore, these configurations were used here.  

Root Mean Squared Error (RMSE) = 
( )

n

FX

n

i

ii∑
=

−

1

2

      (9) 

The configurations were tested using three data sets, two SCOOT data sets from central 
London and one UTMC data set from a radial route in York, UK. For each data set, the data 
is split into train and test sets and the accuracy of the prediction is determined by comparing 
the predicted and actual flows for the test set. In each separate evaluation, all algorithms 
used identical data sets.  For data sets 1 and 2 erroneous sensor readings were removed 
using a simple rule: Univariate Screening given in Krishnan (2008). If a historical record 
contained an erroneous sensor value then the entire record was removed. This was not 
applied to data set 3 where 0 is a valid flow. 

Figure 3.  The Russell Square corridor in central London (Source: Google Maps). 

Data Set 1. SCOOT ILD data from the ASTRID system comprising data from seven sensors 
on the southbound Russell Square corridor in central London as shown in Figure 3 was the 
first data set used in this paper. The data consisted of flow and occupancy readings 
aggregated at 15-minute intervals.  The flow data had range 0-800 and the occupancy data 
had range 0-100. The future vehicle flow values at the downstream (southernmost) sensor 
are to be predicted as a function of temporally lagged flows from the same sensor and its 
upstream neighbours. Weekday data (Monday to Friday) from June and July 2007 were 
used as the training set and August 2007 weekday data formed the test set. There were 
3,840 training records and 337 test records.  
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Figure 4. Marylebone Road in central London (Source: Google Maps). 

Data Set 2. Data set 2 comprised SCOOT ILD data from the ASTRID system for six sensors 
on the eastbound Marylebone Road in central London as shown in Figure 4. These data 
contained 15-minute flow values with data range 0-1600. The future flow values at the 
downstream (easternmost) sensor were predicted. The training data were from May 2008 
and 01/06/2008-13/06/2008 while test data were from 16/06/2008-20/06/2008 (one week). 
Only the weekday data were used giving 2,976 training records and 480 query records. A 
severe traffic incident happened in Marylebone Rd on 20/06 from 18:59 to 21:01. Therefore, 
the AURA k-NN may be compared using two analyses, one using all of the testing data from 
16/06-20/06 and a second analysis using just data from the incident day, 20/06, which 
comprised 96 records. The latter analysis provided an indication of how well the 
configurations performed on incident data when the traffic flow will be anomalous and 
predictions are potentially more useful to the end-users.  

Figure 5.  The Hull Road bus gate in York (Source: Google Maps). 

Data Set 3. Data set 3 comprised vehicle flow data extracted from the UTMC system in 5 
minute periods from a single sensor on Hull Road, York as shown in Figure 5, with data 
range 0 to 100. The sensor is positioned in the vehicle lane next to a bus lane. The vehicle 
count may be used to determine when the bus gate traffic signals should be active. These 
signals control the vehicle flow and, thus, allow the buses freer passage when active. 
Prediction will allow the number of vehicles to be anticipated and the bus signals managed 
proactively. Training data were from 25/11/2008 to 31/01/2009 inclusive and test data were 
from 01/02/2009 to 23/02/2009 inclusive. All days are included. Note that the vehicle counts 
from the sensor are in multiples of 4 due to the nature of the sensor. However, in all 
prediction analyses, the predictor predicts as usual and the prediction is compared to this 
actual reading (a multiple of 4). This rounding should cancel out across all evaluations. 
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Evaluation Description 

For data set 1, k was set to 50, there were 49 bins per variable and the time series length was 
8 (Hodge et al., 2010b). The Russell_FO configuration used the flow and occupancy variables 
and the sensor whose value was to be predicted was excluded. Russell_F used the flow 
variable only and the predicted sensor was included. The Russell_F data set had 7 variables 
so the average daily profile weighting was set to seven or less for data set 1 (i.e. the weight of 
the profile is equivalent to the combined weight of the variables or less). 

For data set 2, k was set to 10, there were 25 bins across all variables and the time series 
length was 8 (Hodge et al., 2010b). Both the Marylebone and Incident AURA k-NN 
configurations used all of the flow variables available. Marylebone had 6 variables so the 
average daily profile was weighted up to six for data set 2 (again, the weight of the profile is 
equivalent to the combined weight of the variables or less). 

For data set 3, k was set to 50, there were 25 bins across all variables and the time series 
length was 12. The BusGate AURA k-NN configuration had only one variable so only a profile 
weighting of 1 was tested. 

This effectively ran ten tests for each AURA k-NN configuration to identify the overall best 
performing predictor configuration of those analysed. For each data set configuration, the 
accuracy of prediction 15 minutes ahead and 1 hour ahead were analysed and there were 
five data configurations. Two configurations of data set 1 using just flow (Russell_F) and 
combining flow and occupancy data from the sensors (Russell_FO), data set 2 using the 
whole test set (Marylebone) and then using just the data from the day of the incident as the 
test set (Incident) and, finally, one evaluation using data set 3 (BusGate). The characteristics 
of these data varied and should provide a thorough evaluation of the predictors. 

 
Results 

In the following, NoProfile indicates the AURA k-NN with no average daily profile. All other 
AURA k-NN configurations use the average daily profile. In P1 the average daily profile used 
weight (ωx) of 1; P2 used weight of 2, and so on. Table 1 lists the RMSE achieved for the 
four AURA k-NN configurations when predicting 15 minutes ahead and lists 5 minute ahead 
prediction for the BusGate data and Table 2 lists the RMSE achieved for all five 
configurations when predicting 1 hour ahead 

Table 1. Listing the RMSE for the various AURA k-NN configurations evaluated for 15 
minute prediction on the four data sets and 5 minute prediction of the BusGate data. 
The best performing profile weight for each configuration is highlighted in grey. 

+ 15 minutes NoProfile P1 P2 P3 P4 P5 P6 P7 
Russell_F 65.2 64.6 64.6 64.5 64.4 64.5 64.4 64.6 
Russell_FO 65.3 64.9 64.7 64.9 64.6 64.8 65.0 65.0 
Marylebone 115.9 116.0 115.5 114.6 114.0 114.3 115.7 - 
Incident 128.8 125.9 124.8 126.6 127.4 126.4 128.2 - 
BusGate 7.37 7.22 - - - - - - 

 

Table 2. Listing the RMSE for the various AURA k-NN configurations evaluated for 1 
hour prediction on the five data sets. The best performing profile weight for each 
configuration is highlighted in grey. 

+ 60 minutes NoProfile P1 P2 P3 P4 P5 P6 P7 
Russell_F 76.1 75.9 75.9 75.4 74.5 74.4 74.0 74.5 
Russell_FO 75.3 74.6 74.6 74.8 74.9 74.6 74.4 74.5 
Marylebone 131.7 129.0 128.4 127.3 128.3 127.5 127.9 - 
Incident 150.7 143.5 139.5 139.4 139.0 139.4 139.0 - 
Bus Gate 9.69 8.78 - - - - - - 
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In table 1, for 15 minute ahead prediction, profile weights 4 and 6 produced the highest 
accuracy for the Russell_F configuration while weight 4 produced the best result for 
Russell_FO. In table 2, for both configurations, the overall best performing profile weighting 
with respect to 1 hour ahead prediction used a profile with weight of 6.  However, across 
both 15 minute and 1 hour ahead prediction combined, weight 6 performs best for both 
configurations. There were twelve variables in Russell_FO so a profile weighting of half the 
total number of variables performs best. For Russell_F with seven variables, the best profile 
weight was one fewer than the total number of flow variables.   

With no profile, Russell_FO outperformed Russell_F. However, when the profile was 
incorporated then Russell_F outperformed Russell_FO.  This indicates that the occupancy 
variable used in Russell_FO was not necessary when profiles were used and best results 
were achieved using only flow variables. 

For data set 2, the results are less conclusive.  However, considering 15 minute and 1 hour 
ahead prediction together, weight 5 performs best for Marylebone and weight 2 performs 
best for Incident closely followed by weight 5. There were six variables in both Marylebone 
and Incident so a profile weighting of one fewer than the total number of flow variables 
performs best for data set 2 overall. 

For data set 3, using an average daily profile improved the RMSE compared to not using the 
average daily profile. Thus the profile weighting was equal to the number of flow variables 

Using an average daily profile improved the prediction accuracy for all evaluations. This 
suggests that, if similar time-series occur when the traffic data is normally similar then the 
outcome (future traffic value) is likely to be similar. The degree of influence of this extra 
matching also needs to be carefully considered. The results indicate that the RMSE does not 
fall and then rise monotonically as the weight increases but is inconsistent. For all 
evaluations with flow variables only, the weighting of the profile should be one fewer than the 
total number of flow variables with a minimum value of 1 to gain the greatest prediction 
accuracy. 

 
Conclusion 

Using an average daily profile (historical average) improved the recall accuracy of the AURA 
k-NN in all evaluations. For multivariate data sets, weighting the profile variable further 
improved the root mean squared error compared to using an un-weighted profile. When 
using a weighted profile using only flow variables outperformed using both flow and 
occupancy for data set 1. For weighting the profile with these data sets, we were able to 
identify a heuristic that performed well, use a profile weight one fewer than the number of 
flow variables with a minimum value of 1. This needs to be validated against other datasets. 

The AURA k-NN predictor will be incorporated into an IDS system for traffic monitoring and 
will be tested against real-world data from London, Kent and York in the UK. By using 
predictions, the IDS will be able to make recommendations proactively and anticipate traffic 
problems rather than functioning reactively as there may be latency in the data collection. 
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