
An Integrated Neural IR System.

Victoria J. Hodge

Dept. of Computer Science,
University of York, UK
vicky@cs.york.ac.uk

Jim Austin

Dept. of Computer Science,
University of York, UK
austin@cs.york.ac.uk

Abstract. Over the years the amount and range of electronic text stored

on the WWW has expanded rapidly, overwhelming both users and tools

designed to index and search the information. It is impossible to index

the WWW dynamically at query time due to the sheer volume so the

index must be pre-compiled and stored in a compact but incremental

data structure as the information is ever-changing. Much of the text

is unstructured so a data structure must be constructed from such text,

storing associations between words and the documents that contain them.

The index must be able to index fine-grained word-based associations

and also handle more abstract concepts such as synonym groups. A

search tool is also required to link to the index and enable the user to

pinpoint their required information. We describe such a system we have

developed in an integrated hybrid neural architecture and evaluate our

system against the benchmark SMART system for retrieval accuracy:

recall and precision.

1 Introduction

Boolean searches approach the Information Retrieval problem at the character
string level. They treat queries as symbols linked by logical functions and store
the word-document links in a data structure such as an inverted file list [8].
Matching is Boolean, documents either match or they do not, there is no scor-
ing or ranking. Statistical methods approach retrieval at the word unit level,
linking words to documents with suitably weighted links. Statistical meth-
ods use data structures such as word document matrixes [10] or multi-layer
neural networks with weighted links [1]. The documents are scored according
to the weight of the links between the query words and the respective docu-
ments. The approach suffers the difficulty of selecting suitable word document
weight parameters which are critical to retrieval. Statistical approaches have
been extended to more knowledge-based approach by Latent Semantic Index-
ing [2] that aims to extract topic information through word document matrix
decomposition. However it is computationally expensive and time-consuming.
Knowledge-based approaches include hierarchical document classification [13]
or word clustering which may be flat or hierarchical. Document structuring



approaches are aimed more at browsing and identifying corpus structure. Flat
word clustering such as WEBSOM [7] simply groups words according to their
similarities. We generate a hierarchical concept representation of the cor-
pus and can exploit fine-grained or abstract word relationships to calculate
document-query similarity and thus rank the documents.

Our overall IR system comprises three modules: a spell checker, a hierarchical
thesaurus and finally a word-document association index. We briefly describe
each module below with citations linked to more detailed descriptions.

The first module is a front-end spell-checking system to isolate any mis-
spelt query words. We use the AURA neural system which provides rapid
training and fast partial match retrieval compared to standard neural and sta-
tistical approaches [5]. Our spell checker validates each query word against the
lexicon using a binary Hamming Distance match. If a word is not matched
we assume a spelling error and our spell-checking module provides a list of
the best candidate matches for the user to select from. We use a synergistic
integration of binary Hamming Distance, n-gram and rule-based phonetic cod-
ing approaches to score the candidate matches and generate a ranked list [6].
The user picks the correct spelling. Our spell-checking module also provides
a word stemming capability so the user can input a word stem and the spell
checker returns a set of stemming variants from the stored lexicon using binary
Hamming Distance matching. For example, if the user inputs ‘engine’ our word
stemmer will suggest ‘engines’, ‘engineer’, ‘engineering’ from the lexicon. This
allows the user to ascertain all appropriate words in the corpus without requir-
ing a priori knowledge of the corpus vocabulary. Finally, all selected words are
awarded an equal score set by the user where a higher score indicates greater
importance with respect to the query.

The second module is a hierarchical thesaurus we generate automatically
from the corpus. We employ a statistical gathering and inference methodol-
ogy to automatically evolve a hierarchical thesaurus from word co-occurrence
statistics in the text corpus. Each word in the corpus is assigned a unique unit
length 90-dimensional real-valued vector and the seven vectors centred about a
specific word are concatenated to produce a context vector representing the cen-
tral word. All context vectors of a word are averaged to produce a real-valued
average context vector. Words are grouped in to clusters by their contextual
similarities using the average context vectors and our TreeGCS [4] growing
hierarchical clustering algorithm built upon Fritzke’s Growing Cell Structures
[3]. The clusters form a tree where the cluster contents (word groups) become
progressively more specific from root to leaf. We can then exploit the intra-
cluster distances and the inter-cluster distances within the synonym hierarchy
to ascribe scores to query words and their synonyms. Two clusters that we
produced using unstructured text from the Reuters text corpus [9] are:
{Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}



{January, February, March, April, May, June, July, August, September, Octo-
ber, November, December, Calendar, Fiscal, Chapter}

The third module is a binary word-document matrix using the AURA
system for fast training and rapid partial match retrieval [5]. Each row of the
matrix effectively indexes a particular word and each column effectively indexes
a specific document and a bit is set at position ij if wordi occurs in documentj.
We index all words except a small set of stop-words (very common words with
a very low discriminatory power with respect to text corpora such as ‘the’ and
‘and’). Unlike many other systems, we store word-document associations for
infrequent corpus words. We hypothesise that low frequency words may have
a low discriminatory power across the corpus but they have a high discrimi-
natory power with respect to the documents that contain them. To retrieve
all documents matching a query word, its stemming variants or synonyms, we
activate the matrix rows indexed by the words and retrieve all columns where
a bit is set. We multiply this output vector by the word score to score the
matching documents.

We pass each query word through each of the three modules in turn, retrieving
a set of matching documents from the word-document matrix. We produce
a separate vector for each query word with an attribute for each document
representing the document’s score with respect to the specific query word, its
synonyms and stemming variants. We take the highest score as the score for
each document with respect to that query word. For example, if a document
matches the query word ‘corn’ and its synonym ‘maize’ awarded 1.0 and 0.5
respectively by the system then the document will take a score of 1.0 for the
query word. We can then rank the documents by summing all query word
vectors to generate a cumulative document score vector and return the set of
matching documents to the user in ranked order.

2 Evaluation

We evaluate our system against the benchmark IR system SMART v11.0 from
Cornell University [11]. We evaluate two configurations of the SMART system:
‘nnn.nnn’ which essentially counts the total number of query words present
in each document and ranks the documents according to the word count and
‘lnc.ltc’ which is the SMART configuration used in the TREC2 evaluation [12]
and ranked fourth of the systems evaluated. We evaluate three configurations
of our system: ‘basic’ which retrieves the single set of best matching docu-
ments, i.e., the set of documents that matching the greatest number of query
words, ‘syn’ which includes synonymy and ‘synStem’ which incorporates both
synonymy and word stemming. We evaluate all system configurations for recall
and precision using 66 queries extracted from the Reuters-21578 Newswire cor-
pus [9]. We extracted the topic sets assigned to the documents in the Reuters
corpus and used these topic sets to generate 66 queries. We determined the



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nnn.nnn lnc.ltc Basic Syn SynStem

R
ec

al
l

System & Configuration

Recall Figures for the System Configurations Evaluated

Top 15
Top 20
Top 30
Top 40
Top 50

(a) Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nnn.nnn lnc.ltc Basic Syn SynStem

P
re

ci
si

on

System & Configuration

Precision Figures for the System Configurations Evaluated

Top 15
Top 20
Top 30
Top 40
Top 50

(b) Precision

Figure 1: Graphs illustrating the recall and precision figures for all system
configurations evaluated for the top 15 to top 50 matches retrieved. Our ‘Ba-
sic’ system retrieves a single set of best matches with generally less than 15
documents so we only evaluate the top 15 matches for ‘Basic’.

correct matching documents for each query; the documents matching the topic
set. We read all documents into the respective system configurations and then
input each query to each system in turn, retrieving the top 15, top 20, top
30, top 40 and top 50 best matching documents for each query. The recall

is the number of correct matches retrieved divided by the expected number
of matches for all queries. The precision is the number of correct matches
retrieved divided by the number of matches retrieved for all queries.

3 Results

There are a total of 155 matching documents for all queries as identified by the
Reuters’ topic assignments for the top 15 matches, 161 for the top 20 and 164
for the other evaluations. We include graphs for the recall and precision in Fig.
1 for easy comparison.

4 Analysis

From Fig. 1, we can see the higher recall and precision figures achieved by our
system compared to the SMART configurations for 66 Reuter’s queries. There
is a significant improvement in the recall and precision figures for our system
compared with all SMART variants. We can also observe the improvement
in recall and precision when the synonym traversal ‘syn’ and when the syn-
onym traversal in conjunction with the stemming module ‘synStem’ is added
to the ‘basic’ system. All system variants (excluding our ‘basic’ system) have
an increasing recall and conversely a decreasing precision as the number of
documents retrieved for each query increases from 15 to 50. This is exactly as
we would expect as the higher number of retrievals increases the probability of



retrieving more correct matches but paradoxically increases the number of false
positives if the correct match is not found and thus decreases the precision fig-
ure. The highest ranked SMART variant, ‘lnc.ltc’, has a lower recall figure for
the top 50 documents than our ‘synStem’ configuration achieves by retrieving
only the top 15 documents. Our ‘synStem’ correctly identifies 113 of 155 correct
matches in the top 15 with ‘lnc.ltc’ retrieving 117 of 164 documents in the top
50. For the precision, our system exceeds the highest-ranking SMART precision
figure for all evaluations. For the top 50 matches, our ‘synStem’ variant re-
trieves 789 documents of which 132 are correct matches, ‘lnc.ltc’ retrieves 1654
documents of which 117 are correct matches. Our ‘synStem’ variant retrieves
fewer documents in total for the top 50 matches (789 documents in total) than
‘lnc.ltc’ retrieves in total for the top 20 matches, retrieving 841 documents. We
note that we did not select the word stems with any bias towards the dataset,
we attempted to select the stem variants we felt most similar to the word stem
such as plurals.

Analysing just the top 15 matches. Of the 66 queries, there was 1 query when
both SMART configurations found one correct match and all configurations of
our system failed to find a single correct match. There were 17 queries when
our system ‘synStem’ found correct matches but ‘lnc.ltc’ failed, the best per-
forming of the SMART configurations. There were 21 queries where ‘synStem’
found more correct matches then ‘basic’ and 2 queries where conversely ‘basic’
found more correct matches than ‘synStem’. For the latter, the ‘basic’ system
found the single correct matches for two queries where the addition of synonym
traversal and stemming boosted the scores of other documents and caused the
single correct match to fall out of the top 15 matches.

5 Conclusion

We feel the top 15 recall figure of 0.729 and top 50 figure of 0.805 for syn-
onym traversal in conjunction with stemming in our IR system is commend-
able particularly with the inconsistencies and anomalies of the Reuters’ topic
assignments with respect to retrieval. The topics were assigned for a train and
test classification task and, as such, probably have vagaries and objectivity
deliberately included. A 73% success rate for retrieving correct match is very
high particularly as this far exceeds the SMART system and our basic sys-
tem. We feel we have validated the accuracy of our implemented system and
demonstrated the necessity of our synonym traversal and stemming modules.
We also note that the synonym traversal we employed for this evaluation only
clustered 2,192 frequently occurring words of the approximately 49,000 words
in the documents. Therefore, we have demonstrated the necessity of such a
module and can also surmise that a complete hierarchy, clustering all words in
the corpus (minus non-essential words such as stop-words) would improve the
recall further.



References

[1] R. Belew, A Connectionist Approach to Conceptual Information Retrieval.
In, Procs of the International Conference on AI and Law, 1987.

[2] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas & R. A. Harsh-
man. Indexing by Latent Semantic Analysis, Journal of the Society for
Information Science, 1(6):391–407, 1990.

[3] B. Fritzke, Growing Cell Structures - a Self-organizing Network for Unsu-
pervised and Supervised Learning. TR-93-026, ICSI, Berkeley, CA, 1993.

[4] V.J. Hodge & J. Austin, Hierarchical Growing Cell Structures: TreeGCS.
In, Procs 4th International Conference on Knowledge-Based Intelligent
Engineering Systems, 2000.

[5] V.J. Hodge & J. Austin, An Evaluation of Standard Retrieval Algorithms
and a Binary Neural Approach. Accepted for publication, Neural Net-
works: Elsevier Science.

[6] V.J. Hodge & J. Austin, An Evaluation of Standard Spell Checking Algo-
rithms and a Binary Neural Approach. Submitted to, IEEE TKDE.

[7] T. Kohonen, Self-organization of very large document collections: State of
the art. In, Procs of ICANN’98, pp 65–74, 1998.

[8] U. Manber & S. Wu, GLIMPSE: A Tool to Search Through Entire File
Systems. 1994 Winter USENIX Technical Conference, 1994.

[9] The Reuters-21578, Distribution 1.0 test collection from D. Lewis’ home
page, currently: http://www.research.att.com/̃lewis

[10] G. Salton, Interactive Information Retrieval. TR69-40, Cornell University,
Computer Science Department, 1969.

[11] SMART, v11 source code: ftp://ftp.cs.cornell.edu/pub/smart

[12] K. Sparck-Jones, Summary Performance Comparisons TREC-2 Through
TREC-7. In, Procs of the 7th Text Retrieval Conference: Appendix B,
NIST Special Publication 500-242, 1999.

[13] Y. Yang, J. Carbonell et al., Learning approaches for detecting and track-
ing news events. IEEE Intelligent Systems 14(4):32–43, 1999.


