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Abstract

In this paper, we introduce a neural network-based decision table al-

gorithm. We focus on the implementation details of the decision table al-

gorithm when it is constructed using the neural network. Decision tables

are simple supervised classifiers which, Kohavi demonstrated, can outper-

form state-of-the-art classifiers such as C4.5. We couple this power with

the efficiency and flexibility of a binary associative-memory neural net-

work. Initially, we demonstrate how the binary associative-memory neural

network can form the decision table index to map between attribute values

and data records and subsequently we show how two attribute selection

algorithms can be used to pre-select attributes for this decision table. The

attribute selection algorithms are easily implemented within the same bin-

ary associative-memory framework producing a tightly-coupled, two-tier

system allowing attribute selection and decision table indexing. The first

attribute selector uses mutual information between attributes and classes

to select the attributes that classify best. The second attribute selector

uses a probabilistic approach to evaluate randomly selected attribute sub-

sets.
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1 Introduction

Supervised classifier algorithms aim to predict the class of an unseen data item.

They induce a hypothesis using the training data to map inputs onto classified

outputs (decisions). This hypothesis should then correctly classify previously

unseen data items. There is a wide variety of classifiers including: decision

trees, neural networks, Bayesian classifiers, Support Vector Machines and k-

nearest neighbour.

We have previously developed a k-NN classifier [11] using an associative memory

neural network called the Advanced Uncertain Reasoning Architecture (AURA) [6].

In this paper, we extend the approach to encompass a supervised decision table

classifier, coupling the classification power of the decision table with the speed

and storage efficiency of an associative memory neural network.

The decision table has two components: a schema and a body. The schema is

the set of attributes pre-selected to represent the data and is usually a subset of

the data’s total attributes. There are various approaches for attribute selection;

we discuss two later in this paper. The body is essentially a table of labelled

data items where the attributes specified by the schema form the rows and the

decisions (classifications) form the columns. Each column is mutually exclusive

and represents an equivalence set of records as defined by the attributes of the

schema. Kohavi [13] uses a Decision Table Majority (DTM) for classification

whereby if an unseen item exactly matches a stored item in the body then the

decision table assigns the stored item’s decision to the unseen item. However,

if there is no exact match then the decision table assigns the majority class

across all items to the unseen item. Our decision table approach implements

both DTM and proximity-based matching as implemented in our k-NN classifier

whereby if there is no exact match then the decision table assigns the class of

the nearest stored item to the unseen item.
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2 RAM-based Neural Networks

The AURA C++ library provides a range of classes and methods for rapid

partial matching of large data sets [6]. In this paper we define partial matching

as the retrieval of those stored records that match some or all of the input

record. In our AURA decision table, we use best partial matching to retrieve

the records that are the top matches.

AURA belongs to a class of neural networks called Random Access Memory

(RAM-based) networks. RAM-based networks were first developed by Bledsoe

and Browning [8] and Aleksander and Albrow [1] for pattern recognition and

led to the WISARD pattern recognition machine [2]. See also [4] for a detailed

compilation of RAM methods.

RAMs are founded on the twin principles of matrices (usually called Correlation

Matrix Memories (CMMs)) and n-tupling. Each matrix accepts m inputs as

a vector or tuple addressing m rows and n outputs as a vector addressing n

columns of the matrix. During the training phase, for the j-th instance the

matrix weights M lk are incremented if both the input row I lj and output column

Ok
j are set. Therefore, training is a single epoch process with one training step

for each input-output association preserving the performance. During recall,

the presentation of vector Ij elicits the recall of vector Oj as vector Ij contains

all of the addressing information necessary to access and retrieve vector Oj .

This training and recall makes RAMs computationally simple and transparent

with well-understood properties. RAMs are also able to partially match records

during retrieval. Therefore, they can rapidly match records that are close to the

input but do not match exactly.
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2.1 AURA

The binary neural technique evaluated here uses AURA [6], which comprises a

C++ library of classes and functions. AURA has been used in an information

retrieval system [9], high speed rule matching systems [5], 3-D structure match-

ing [17] and trademark searching [3]. AURA techniques have demonstrated

superior performance with respect to speed compared to conventional data in-

dexing approaches [10] such as hashing and inverted file lists which may be used

for a decision table body. AURA trains 20 times faster than an inverted file

list and 16 times faster than a hashing algorithm. It is up to 24 times faster

than the inverted file list for recall and up to 14 times faster than the hashing

algorithm. AURA techniques have demonstrated superior speed and accuracy

compared to conventional neural classifiers [19].

The rapid training, computational simplicity, network transparency and partial

match capability of RAM networks coupled with our robust quantisation and

encoding method to map numeric attributes from the data set onto binary

vectors for training and recall make AURA ideal to use as the basis of an

efficient implementation. A more formal definition of AURA, its components

and methods now follows.

Correlation Matrix Memories (CMMs) are the building blocks for AURA sys-

tems. AURA uses binary input I and output O vectors to store records in a

CMM M as in equation 1. Training (construction of a CMM) is a single epoch

process with one training step for each input-output association (each IjOj
T in

equation 1) which equates to one step for each record in the data set.

This process is illustrated in figure 1.

M =
∨
j

(IjOj
T ) where

∨
is logical OR (1)
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Recall of outputs associated with inputs to the CMM is performed by a product

of a recall input vector Ik and CMM, as in equation 2. For an input Ik that

appeared in the training set, we get a (non-binary) vector R, which is composed

of the required output vector multiplied by a weight based on the dot product of

the input vector with itself, plus a noise term ε formed from the cross products

of the input with a reduced CMM. We constrain the number of bits set to one

in the binary vectors to be always the same, so the weight is always known and

can be used to set a threshold to convert R back to the binary vector Ok. If the

inputs or outputs stored in M are orthogonal then the noise term ε disappears

and we have exact recall. For sparse binary vectors that are not orthogonal,

the noise is in most cases removed by the threshold process. The probability of

failure can be calculated, and the system engineered accordingly. If the recall

input Ik is not from the original training set, then the system will recall the

output Ok associated with the closest stored input to Ik, based on the dot

product between the test and training inputs. The threshold must be adjusted,

and may either be fixed (Willshaw) or adaptive (L-max).

RT = Ik
T ·M (2)

= Ik
T IkOk

T + Ik
T (M − IkOk

T ) (3)

= ‖Ik‖Ok
T + ε (4)

For the method described in this paper, we:

• Train the CMM (decision table body CMM) on the data set, so that it

indexes all records in the data set and allows them to be matched.

• Select the attributes for the schema using schema CMMs. We describe

two selection algorithms. The first uses a single CMM but the second

algorithm uses two coupled CMMs.

• Match and classify unseen items using the trained decision table.
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Figure 1: Showing a CMM with input vector i and output vector o. Four matrix

locations are set following training – i0o0, i2on−2, im−1o0 and imon.
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3 Data

For the data sets:

• Symbolic and numerical unordered attributes are enumerated and each

separate token maps onto an integer (Text 7→ Integer) which identifies

the bit to set within the vector. For example, a SEX TYPE attribute

would map as (F 7→ 0) and (M 7→ 1).

Kohavi’s DTM methodology is principally aimed at symbolic attributes but the

AURA decision table can also handle continuous numeric attributes.

• Any real-valued or ordered numeric attributes are quantised (mapped to

discrete bins), and each individual bin maps onto an integer which iden-

tifies the bit to set in the input vector. There are various quantisation

techniques that may be used (see [12]) for an evaluation of four techniques

in an AURA-based k-nearest neighbour algorithm. In this paper, we de-

scribe the simple equi-width quantisation.

A range of input values for attribute f map onto each bin which in turn maps

to a unique integer to index the vector as in equation 5. The range of attribute

values mapping to each bin is equal, i.e. the bins have equal width.

<fi → binsfk 7→ Integerfk + offsetf (5)

where

i ∈ FVf ∧ cardinality(Integer) ≡ cardinality(binsf )

In equation 5, offsetf is a cumulative integer offset within the binary vector

for each attribute f and offsetf+1 = offsetf + nBinsf , where nBinsf is the

number of bins for attribute f , FVf is the set of attribute values for attribute

f , → is a many-to-one mapping and 7→ is a one-to-one mapping.
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This equi-width quantisation or binning approach aims to subdivide the at-

tributes uniformly across the range of each attribute. The range of values is

divided into b bins such that each bin is of equal width. The even widths of

the bins prevent distortion of the inter-bin distances, so the binned data can be

used to calculate distances between data points that approximate the Euclidean

distance.

3.1 Data Vectors

Once the bins and integer mappings have been determined, we map the records

onto binary vectors. Each attribute maps onto a consecutive section of bits in

the binary vector, thus:

For each record in the data set

For each attribute

Calculate bin for attribute value;

Set bit in vector as in equation 5;

Each binary vector represents a record from the data set.

4 Body Training

The decision table body is an index of all contingencies and the decision to take

for each. Input vectors represent quantised records and form an input Ij to the

CMM during training. The CMM associates the input with a unique output

vector Oj
T during training which represents an equivalence set of records. This

produces a CMM where the rows represent the attributes and their respective

values and the columns represent equivalence sets of records (where equivalence

is determined by the attributes designated by the schema). We use an array of

linked lists to store the equivalence sets of records and a second array to store
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the counts of each class for the equivalence set as a histogram. The algorithm

is:

1) Input vector to CMM;

2) Threshold at value nF;

3) If exact match

4) Add the record to column list;

5) Add class to histogram;

6) Else train record as next column;

where nF is the number of attributes. Steps 1 and 2 are equivalent to testing for

an exact match during body recall as described next. Training is a single epoch

process with one training iteration (steps 1-6) for each input-output association

(each IjOj
T in equation 1) which equates to one iteration for each record in the

data set. Figure 3 shows a trained CMM where each row is an attribute value

and each column represents an equivalence set.

4.1 Example

We take 12 records from the Iris data set (available from [7]) as shown in table

1. The decision table with equi-width quantisation and 5 bins will be:

Sepal length has range 4.6 to 7.1 which is a spread of 2.5 and bin widths 0.5.

Therefore, the bin boundaries are: [4.6, 5.1), [5.1, 5.6), [5.6, 6.1), [6.1, 6.6), [6.6, 7.1].

Sepal width has range 2.3 to 3.5 which is a spread of 1.2 and bin widths 0.24.

Therefore, the bin boundaries are: [2.3, 2.54), [2.54, 2.78), [2.78, 3.02), [3.02, 3.26), [3.26, 3.5].

Petal length has range 1.3 to 6.0 which is a spread of 4.7 and bin widths 0.94.

Therefore, the bin boundaries are: [1.3, 2.24), [2.24, 3.18), [3.18, 4.12), [4.12, 5.06), [5.06, 6.0].

Sepal length has range 0.2 to 2.5 which is a spread of 2.3 and bin widths 0.46.
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ID Sepal len. Sepal width Petal len. Petal width Class

1 5.1 3.5 1.4 0.2 Iris-setosa

2 4.9 3.0 1.4 0.2 Iris-setosa

3 4.7 3.2 1.3 0.2 Iris-setosa

4 4.6 3.1 1.5 0.2 Iris-setosa

5 7.0 3.2 4.7 1.4 Iris-versicolor

6 6.4 3.2 4.5 1.5 Iris-versicolor

7 6.9 3.1 4.9 1.5 Iris-versicolor

8 5.5 2.3 4.0 1.3 Iris-versicolor

9 6.3 3.3 6.0 2.5 Iris-virginica

10 5.8 2.7 5.1 1.9 Iris-virginica

11 7.1 3.0 5.9 2.1 Iris-virginica

12 6.9 2.9 5.6 2.4 Iris-virginica

Table 1: Table listing 12 example records from the Iris data set.

Therefore, the bin boundaries are: [0.2, 0.66), [0.66, 1.12), [1.12, 1.58), [1.58, 2.04), [2.04, 2.5].

The 12 records map on to the CMM (decision table body) as shown in figure 2.

The rows represent the attribute value bins (the bin boundaries are listed in

figure 2) and the columns represent the equivalence sets. Records 3 & 4 map to

the same equivalence set. Records 5 & 7 map to the same equivalence set as do

records 11 & 12. Each record has an associated class as given in table 1. The

shaded arrows in figure 2 indicate the columns that the three classes map to.

5 Body Recall

The decision table classifies by finding the set of matching records. To recall

the matches for a query record, we firstly produce an input vector by quantising

the target values for each attribute to identify the bins and thus CMM rows

to activate as in equation 3. To retrieve the matching records for a particular
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Sepal Len

Sepal Width

Petal Len

Petal Width

[4.6, 5.1)

[5.1, 5.6)

[5.6, 6.1)

[6.1, 6.6)

[6.6, 7.1]

[2.3, 2.54)

[2.54, 2.78)

[2.78, 3.02)

[3.02, 3.26)

[3.26, 3.5]

[1.3, 2.24)

[2.24, 3.18)

[3.18, 4.12)

[5.06, 6.0]

[0.2, 0.66)

[1.12, 1.58)

[1.58, 2.04)

[2.04, 2.5)

[0.66, 1.12)

Bin Boundaries

Equivalence Sets

Record IDs

[4.12, 5.06)

Figure 2: Showing the 12 example records from the Iris data set mapping to the

CMM decision table body. We have separated the CMM rows across the attrib-

utes for easy viewing. The figure represents a 20 input row CMM (4 attributes

with 5 bins (CMM rows) per attribute) with 9 columns (equivalence sets of re-

cords). The different shading on the arrows indicates the classes: iris-setosa is

represented by the three leftmost columns; iris-versicolor is represented by the

middle three columns; and iris-virginica is represented by the three rightmost

columns.
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record, AURA effectively calculates the dot product of the input vector Ik and

the CMM, computing a positive integer-valued output vector R (the summed

output vector) as in equation 6 and figure 3 and figure 4.

RT = Ik ·M (6)

The AURA technique thresholds the summed output R to produce a binary

output vector as in figure 3 for exact match and figure 4 for a partial match.

For exact match (as in Kohavi’s DTM), we use the Willshaw threshold. This

sets a bit in the thresholded output vector for every location in the summed

output vector that has a value higher than or equal to a threshold value. The

threshold value is set to the number of attributes nF for an exact match. If

there is an exact match there will be a bit set in the thresholded output vector

indicating the matching equivalence set. It is then simply a case of looking up

the class histogram for this equivalence set in the stored array and classifying

the record by the majority class in the histogram. If there are no bits set in the

thresholded output vector then we classify the unseen record according to the

majority class across the data set.

For partial matching, we use the L-Max threshold. L-Max thresholding essen-

tially retrieves at least L top matches. It sets a bit in the thresholded output vec-

tor for every location in the summed output vector that has a value higher than

a threshold value. The AURA C++ library automatically sets the threshold

value to the highest integer value that will retrieve at least L matches. For the

AURA decision table, L is set to the value of 1. There will be a bit set in the

thresholded output vector indicating the best matching equivalence set. It is

then simply a case of looking up the class histogram for this equivalence set in

the stored array and classifying the unseen record as the majority class. We

note there may be more than one best matching equivalence set so the majority

class across all best matching sets will need to be calculated.
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Figure 3: Diagram showing the CMM recall for an exact match. The left hand

column is the input vector. The dot is the value for each attribute (a value

for an unordered attribute or a bin for an ordered numeric attribute). Each

column of the CMM matrix represents an equivalence set. AURA multiplies

the input vector by the values in the matrix columns, using the dot product,

sums each column to produce the summed output vector and then thresholds

this vector at a value equivalent to the number of attributes in the input (6

here) to produce the thresholded attribute vector which indicates the matching

column (the middle column here).
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Figure 4: Diagram showing the CMM recall for a partial match. The left hand

column is the input vector. The dot is the value for each attribute (a value for

an unordered attribute or a bin for an ordered numeric attribute). Each column

of the CMM matrix represents an equivalence set. AURA multiplies the input

vector by the values in the matrix columns, using the dot product, sums each

column to produce the summed output vector and then thresholds this vector

at a value equivalent to the highest value in the vector (5 here) to produce the

thresholded attribute vector which indicates the matching column (the middle

column here).
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6 Schema Training

In the decision table body CMM, the rows represented attribute values and the

columns represented equivalence sets. In the schema CMM used for the first

attribute selection algorithm (Mutual Information Attribute Selection, detailed

in section 7.1), the rows represent attribute values and the columns represent

individual records. For our second attribute selection algorithm (Probabilistic

Las Vegas Algorithm, detailed in section 7.2), we use two CMMs where the first

CMM indexes the second CMM (see figure 5). In the first, CMM1, the rows

represent records and the columns represent attribute values. In the second,

CMM2, the rows represent attribute values and the columns represent the re-

cords. This second CMM2 is therefore identical to the CMM used for the first

attribute selection algorithm

During training for the first attribute selection algorithm and CMM2 of the

second attribute selection algorithm, the input vectors Ij represent the attribute

values in the data records. The CMM associates the input with a unique output

vector Oj . Each output vector is orthogonal with a single bit set corresponding

to the record’s position in the data set, the first record has the first bit set in the

output vector, the second and so on. Training these CMMs entails one iteration

for each record in the data set. During training for CMM1, the records represent

the input vectors Ij with a single bit set and the output vectors Oj represent

the attribute values in the data records. The CMM training process is given in

equation 1. Training this CMMs entails one training iteration for each input-

output association. For the Mutual Information Attribute Selection algorithm,

training is an n-iteration process. For the Probabilistic Las Vegas Algorithm,

training is an n-iteration process but with two CMM loops per iteration (each

IjOj
T in equation 1).
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7 Schema Attribute Selection

As with Kohavi, we assume that all records are to be used in the body and

during attribute selection.

There are two fundamental approaches to attribute selection which are used

in classification: a filter approach that selects the optimal set of attributes

independently of the classifier algorithm and the wrapper approach that selects

attributes to optimise classification using the algorithm. We examine two filter

approaches which are more flexible than wrapper approaches as they are not

directly coupled to the classification algorithm.

For a data set with N attributes there are O(NM ) possible combinations of

M attributes which makes exhaustive search intractable. In the following, we

discuss the mapping of two approaches to the binary AURA architecture – a

filter approach (mutual information attribute selection) that examines attributes

on an individual basis, and a probabilistic filter approach (probabilistic Las

Vegas algorithm) that examines randomly selected subsets of attributes.

7.1 Mutual Information Attribute Selection

Wettscherek [18] describes a mutual information attribute selection algorithm

which calculates the mutual information between class C and each attribute

Fj using the data from the training set. The mutual information between two

attributes is “the reduction in uncertainty concerning the possible values of

one attribute that is obtained when the value of the other attribute is determ-

ined” [18].

Using the notation from [18], for unordered attributes nFV is the number of

distinct attribute values (fi) for attribute Fj and nClasses the number of classes

(C):
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I(C,Fj) =

nFV∑
i=1

nClasses∑
c=1

p((C = c) ∧ (Fj = fi)) · log
p((C = c) ∧ (Fj = fi))

p(C = c) · p(Fj = fi)
(7)

For ordered numeric and continuous attributes, the technique must compute the

mutual information between a discrete random variable (class) and a continu-

ous random variable (attribute). Wettscherek assumes that attribute Fj has

density f(x) and the joint density of C and Fj is f(x,C = c). Then the mutual

information across the data set x is:

I(C,Fj) =

∫
x

nClasses∑
c=1

f(x,C = c) · log
f(x,C = c)

f(x) · p(C = c)
dx (8)

Equation 8 requires an estimate of the density function f(x) and the joint density

function f(x,C = c). Wettscherek uses density estimation: using the k-th

nearest neighbour density estimate to estimate the density at a certain point

using the distance of the k-th nearest data point from this point. The density

f̂(x) at point x is given by equation 9:

f̂(x) =
k − 1

2Ndk(x)
(9)

where N is the number of records and dk(x) is the distance of the k-th nearest

point from point x. Wettscherek posits a k value of 25 as providing good density

estimation. This requires the calculation of the distance from x to all other

points in the data set to determine the 25th nearest neighbour.

Wettscherek also approximates
∫
x

by computing the value of f(x) for values of x

from 0 to 1 in steps of 0.002. This requires 501 computations to calculate each

mutual information value for each attribute, each calculation being of:

nClasses∑
c=1

f(x,C = c) · log
f(x,C = c)

f(x) · p(C = c)
(10)
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To approximate f(x) and f(x,C = c), we utilise the binning to represent the

density. This is analogous to the Trapezium Rule for using the areas of slices

(trapezia) to represent the area under the graph for integration. We use the bins

to represent strips of the probability density function and count the number of

records mapping into each bin to estimate the density.

Considering AURA, for unordered data, from figure 3 we see that each attribute

is mapped to a number of (adjacent) rows in the CMM. The number of distinct

values for the attribute is the number of rows required, so n(rowsFV ) = nFV

where n(rowsFV ) gives the number of rows used for attribute Fj .

For training, we set only one bit in the vector Ok indicating the location of the

record in the data set. This makes the length of O large, but not unfeasibly so

when using AURA with data sets of millions of records.

Each row of the CMM corresponds to a particular value of a particular attribute.

The number of bits set on that row corresponds to the number of training records

which had that value of that attribute.

Representing the CMM row for fi by BV fi, and taking BV c as a binary vector

of the same size constructed so that it contains bits set for all records in a

particular class, then taking the dot product (implemented as a logical AND

and sum over elements) of BV fi and BV c gives the number of records in a

particular class with a particular attribute value. We represent this number of

bits set in the vector by n(BV fi ∧BV c).

We can thus obtain the probabilities required by equation 7 in terms of the

bit vectors created in the CMM (where N is the number of training examples

stored).

18



p((C = c) ∧ (Fj = fi)) =
n(BV fi ∧BV c)

N
(11)

p(c) =
n(BV c)

N
(12)

p(Fj = fi) =
n(BV fi)

N
(13)

Substituting the above into equation 7, the mutual information is given by

equation 14:

I(C,Fj) =

nRowsFV∑
i=1

nClasses∑
c=1

n(BV fi)

N
· n(BV fi ∧BV c)

n(BV fi)
· log

 n(BV fi)
N · n(BV fi∧BV c)

n(BV fi)

n(BVc)
N · n(BV fi)

N


=

nRowsFV∑
i=1

nClasses∑
c=1

n(BV fi ∧BV c)
N

log

(
N · n(BV fi ∧BV c)
n(BV c) · n(BV Fi)

)
(14)

where nRowsFV is the number of rows in the CMM for attribute Fj , N is the

number of records in the data set, BV fi is a binary vector (CMM row) for fi,

BV c is a binary vector with one bit set for each record in class c, n(BV fi∧BV c)

is a count of the set bits when BV c is logically ANDed with BV fi and n(BV c)

is the number of records in class c.

We can follow the same process for real/discrete ordered numeric attributes in

AURA. In this case, the mutual information is given by equation 15:

I(C,Fj) =

nB∑
i=1

nClasses∑
c=1

n(BV bi)

N
· n(BV bi ∧BV c)

n(BV bi)
· log

 n(BV bi)
N · n(BV bi∧BV c)

n(BV bi)

nClassc
N · n(BV bi)

N


=

nB∑
i=1

nClasses∑
c=1

n(BV bi ∧BV c)
N

· log

(
N · n(BV bi ∧BV c)
n(BV c) · n(BV bi)

)
(15)

where nB is the number of bins in the CMM for attribute Fj , N is the number

of records in the data set, BV bi is a binary vector (CMM row) for fi, BV c is

a binary vector with one bit set for each record in class c, n(BV bi ∧ BV c) is a
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count of the set bits when BV c is logically ANDed with BV bi and n(BV c) is

the number of records in class c.

Having reduced the attribute selection problem to operations of rows of the

CMM, implementation is straightforward. Because the AURA library is tar-

geted at hardware support of matrix operations, the operation to count the

number of bits set in a vector does not require iteration along the whole length

of the vector, so it is an efficient operation for AURA and thus the selection of

attributes is fast.

The technique assumes independence of attributes and ignores missing values.

It is also the user’s prerogative to determine the number of attributes to select.

7.2 Probabilistic Las Vegas Algorithm

Liu and Setiono [14] introduced a probabilistic Las Vegas algorithm which uses

random search and inconsistency to evaluate attribute subsets. For each equi-

valence set of records (where the records match according to the attributes

designated in the schema), consistency is defined as the number of matching

records minus the largest number of matching records in any one class. The

inconsistency scores are summed across all equivalence sets to produce an in-

consistency score for the particular attribute selection.

The technique uses random search to select attributes as random search is less

susceptible to local minima than heuristic searches such as forward search or

backward search. Forward search works by greedily adding attributes to a subset

of selected attributes until some termination condition is met whereby adding

new attributes to the subset does not increase the discriminatory power of the

subset above a pre-specified threshold value. Backward search works by greedily

removing attributes from an initial set of all attributes until some termination

condition is met whereby removing an attribute from the subset decreases the
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discriminatory power of the subset above a pre-specified threshold. A poor

attribute choice at the beginning of a forward or backward search will adversely

effect the final selection whereas a random search will not rely on any initial

choices.

Liu and Setiono define their algorithm as:

1) Fbest = N;

2) For j = 1 to MAX_TRIES

3) S = randomAttributeSet(seed);

4) nF = numberOfAttributes(S);

5) If(nF < nFbest)

6) If(InconCheck(S,D) < g)

7) Sbest = S; nFbest = nF;

8) End for

where D is the data set, N the number of attributes and g the permissible

inconsistency score. Liu and Setiono recommend setting MAX TRIES to 77 ×

N5.

Liu and Setiono’s algorithm may be calculated simply using the AURA schema

CMMs. We need to use two linked CMMs for the calculation as in figure 5. We

rotate the schema CMM (CMM1) through 90 degrees, so that CMM1’s rows

index the records and CMM1’s columns index the attribute values. When we

present a vector indexing a record to CMM1, we recall the associated attribute

values. If we then take the output from CMM1 (the activated attribute values)

and present it to CMM2, we will recall a vector with indices for all records that

match the set of attribute values. Bitwise comparison of this vector with vec-

tors representing class membership thus allows us to calculate the inconsistency

scores easily.

Line 6 of Liu and Setiono’s algorithm listed above then becomes:
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Figure 5: Showing the two CMM combination we use for Liu and Setiono’s

algorithm. In the first CMM (CMM1), the records index the rows (one row

per record) and the attribute values index the columns. The outputs from the

CMM (matching attribute values) feed straight into the second CMM(CMM2),

where the attribute values index the rows and the records index the columns

(one column per record).
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Place all records in a queue Q;

While !empty(Q)

Remove R the head record from Q;

Activate row R in CMM1;

Threshold CMM1 at value 1;

Feed CMM1 output into CMM2;

Threshold CMM2 at value Fbest;

B = bits set in thresholded_vector;

Max = cardinality of largest class;

InconCheck(S,D) += B - Max;

End while

The queue holds the records to be processed. Given the method of storage of the

data in CMM1, the queue is effectively the input vector to CMM1. Successive

records are accessed by stepping through elements of the input vector. By

setting the bit for the record at the top of the “queue”, the row in CMM1 is

accessed, and Willshaw thresholding at value 1 (denoting all active columns

(i.e., all attribute values in the record)) gives us that record’s attribute values.

When these values are passed into CMM2, we access all records matching these

values.

The search over the space of combinations of attributes is random. We can

generate random subsets of attributes Si to use by generating a mask to AND

with the output from CMM1 before it is passed to CMM2.

By thresholding the output from CMM2 at the value Fbest = ‖Si‖ (the number

of attributes in Si), we retrieve the equivalence set of matching records where

equivalence is specified by the current attribute selection in the algorithm. It is

then simply a matter of counting the number of matching records (the number

of bits set in the thresholded output vector), calculating the number of these

matching records in each class, identifying the largest class membership and

subtracting the largest class membership from the number of records.
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The algorithm has now processed all of the records in this equivalence set so it

removes these records from the queue by ORing the thresholded output vector

from CMM2 with another mask - the next record to be accessed in CMM1 is

the next element of the input vector for which the mask bit is not set. If we

repeat this process for each record at the head of the queue until the queue

is empty, we will have processed all equivalence sets. We can then calculate

InconCheck(Si, D) for this attribute selection and compare it with the threshold

value as in line 6 of Liu and Setiono’s algorithm.

This approach to calculating inconsistency for subsets of attributes is efficient

as the CMMs store all attributes and their values but we only focus on those

attributes under investigation during each iteration of the algorithm. An altern-

ative approach would be to just store those attributes selected in the random

subset each time we execute line 6 of Liu and Setiono’s algorithm but the CMMs

would need to be retrained many times (up to 77×N5).

Once we have iterated through Liu and Setiono’s algorithm MAX TRIES times

then we have selected an “optimal” attribute subset. We have not tried all

combinations of all attributes as this is intractable for a large data set. However,

Liu and Setiono demonstrated empirically that it was a sufficient approximation.

8 Analysis

The two attribute selection methods detailed in section 7 are just two of many

possible techniques that may be used in the AURA decision table. In this

section, we select one method, a standard implementation of Wettscherek’s at-

tribute selection algorithm, and compare the run times with our AURA-based

implementation across a range of data sets. We note that all real-valued attrib-

utes are normalised into the range [0, 1] for this investigation. Any categorical

attributes or discrete numeric attributes are treated identically between the

two methods under investigation so the main difference lies with the speed of
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Data set Num Atts Num Real Num Data

heart 13 6 270

hypo 25 7 3163

sick-eu 25 7 3163

vehicle 18 18 846

IBM 9 9 20000

REAL 14 14 200000

Table 2: Table listing the specifications of the data sets where NumAtts is the

number of attributes in the data set NumReal is the number of continuous

attributes and NumData is the number of records in the data set.

the technique on real-valued attributes. Both techniques use C++ algorithms

compiled with GNU g++ v2.95.3 using the Solaris8 OS and run as command-

line applications on a 750MHz SPARC-based Sun Blade1000 with 4GB RAM.

The AURA methodology uses the AURA C++ class library [16] which provides

classes and methods for CMMs and thresholding.

We use four data sets from the UCI data repository [7] (heart, hypothyroid, sick-

euthyroid and vehicle), one data set generated by the IBM data set generator [15]

and a data set generated using a random number generator that we have used

in previous evaluations [11].

We ran the standard selector and then the AURA-based selector five times on

each data set to allow us to calculate an average attribute selection time for

each technique for each data set.

The average times (across 5 runs) for the Wettscherek standard attribute se-

lector and our AURA-based implementation run on the 6 data sets are listed in

table 3

The AURA-based technique is between 14 and 111 times faster for selecting

attributes compared to the standard implementation.
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Data set Standard AURA AURA speedup

heart 0.71 0.05 14

hypo 1.50 0.034 45

sick-eu 1.51 0.033 45

vehicle 5.80 0.05 111

IBM 37.6 0.97 39

REAL 1146.0 29.6 39

Table 3: Table listing the average run time (across 5 runs) for the standard at-

tributes selector, for the AURA-based attribute selector and the speedup (times

faster) of the AURA technique compared to the standard

9 Conclusion

In this paper we have introduced a binary neural decision table classifier. The

AURA neural architecture, which underpins the classifier, has demonstrated su-

perior training and recall speed compared to conventional indexing approaches

such as hashing or inverted file lists which may be used for a decision table

when all techniques are implemented in software and run on identical machines.

AURA trains 20 times faster than an inverted file list and 16 times faster than a

hashing algorithm. It is up to 24 times faster than the inverted file list for recall

and up to 14 times faster than the hashing algorithm. In this paper, we fur-

ther demonstrated the superiority of the AURA framework as the AURA-based

attribute selector was up to 111 times faster than a standard implementation

when both algorithms were run on identical machines.

We have shown how two quite different attribute selection approaches may be

implemented within the AURA decision table framework. We described a mu-

tual information attribute selector that examines attributes on an individual

basis and scores them according to their class discrimination ability. We also

demonstrated a probabilistic Las Vegas algorithm which uses random search

and inconsistency to evaluate attribute subsets.
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The technique is flexible and easily extended to other attribute selection al-

gorithms.
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