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ABSTRACT
Aerial drones are increasingly being considered as a valuable tool
for inspection in safety critical contexts. Nowhere is this more true
than in mining operations which present a dynamic and dangerous
environment for human operators. Drones can be deployed in a
number of contexts including efficient surveying as well as search
and rescue missions. Operating in these dynamic contexts is chal-
lenging however and requires the drones control software to detect
and adapt to conditions at run-time.

To help in the development of such systems we present Aloft, a
simulation supported testbed for investigating self-adaptive con-
trollers for drones in mines. Aloft utilises the Robot Operating
system (ROS) and a model environment using Gazebo to provide a
physics-based testing. The simulation environment is constructed
from a 3D point cloud collected in a physical mock-up of a mine
and contains features expected to be found in real-world contexts.

Aloft allows members of the research community to deploy their
own self-adaptive controllers into the control loop of the drone to
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evaluate the effectiveness and robustness of controllers in a chal-
lenging environment. To demonstrate our system we provide a self-
adaptive drone controller and operating scenario as an exemplar.
The self-adaptive drone controller provided utilises a two-layered
architecture with a MAPE-K feedback loop. The scenario is an in-
spection task during which we inject a communications failure. The
aim of the controller is to detect this loss of communication and au-
tonomously perform a return home behaviour. Limited battery life
presents a constraint on the mission, which therefore means that
the drone should complete its mission as fast as possible. Humans,
however, might also be present within the environment. This poses
a safety risk and the drone must be able to avoid collisions during
autonomous flight.

In this paper we describe the controller framework and the sim-
ulation environment and provide information on how a user might
construct and evaluate their own controllers in the presence of
disruptions at run-time.
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ries; • Applied computing→ Earth and atmospheric sciences.
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1 INTRODUCTION
The goal of this artifact is to facilitate the development of adaptive
aerial autonomous systems capable of operating in challenging
or dangerous environments. Additionally a focus on the safety
of humans, protection of the environment, and the assured per-
formance of the autonomous agents. To achieve this, we provide
a simulation environment within which to develop and test au-
tonomous behaviours, and analyse an example scenario in which
an autonomous drone must safely perform a return-to-home in re-
sponse to a loss of signal event in a mine while avoiding collisions
with the environment and humans. We emphasise that although
we provide a mine-based environment, our aim is a generalised
testbed that may support research into self-adaptive autonomous
systems in general.

Exploration [13] and inspection of underground mines [13], or
search and rescue [14, 16, 23] using drones needs to be safe. Drones
are a cost-effective tool for these tasks. The drone’s autonomous
navigation must mitigate the inherent hazards and risks, be able to
adapt to the dynamic environment and be robust to the limited or
degraded communications [17] commonly experienced in mines.
There are a number of drone navigation approaches described in
the literature. These can be subdivided into model-based (classical)
and model-free (data-based) approaches. Model-based approaches
include the extended Kalman filter (EKF) [20] and vector field his-
togram [22]. Model-free approaches include approaches such as
deep learning [11] and deep reinforcement learning [7, 11]. Any
of these can be incorporated into the simulation to evaluate their
effectiveness and ability to adapt.

Our exemplar scenario consists of a human-piloted drone being
used for a surveying task, during which the drone loses pilot control
signal and must safely navigate home and land. The simulation is
a two-layered architecture, with a managed system (application)
and a managing system (self-adaptation). The Aloft framework fa-
cilitates the simulation of normal behaviours, failures and adaptive
behaviours of drones at runtime. It provides a 3D physics-based
simulation from which the user can create different simulation
worlds and drone models, and can analyse the status of the drone’s
system and tasks. It allows the implementation and evaluation
of self-adaptive drone controllers that safely respond to failures
and environment changes. Aloft allows runtime data collection to
facilitate post-flight analysis.

Our paper’s main contributions are as follows:
(1) An identification of challenges of mine-based autonomous

drone flight and subsequent need for a self-adaptive controller
(2) 3D mock-mine models constructed from real-world mine point

cloud data and real-world laboratory mock-mine designs
(3) An artifact, containing a complete software setup, used to

facilitate development of self-adaptive drone controllers
(4) An exemplar return-to-home adaptive drone controller
Sec. 2 gives an overview of drone applications in mines followed

(a) Surveying (b) Signal Loss (c) ReturnHome (d) Landing
Figure 1: An illustration of the return-to-home exemplar
problem used to demonstrate our Aloft artifact. The drone
begins to survey under pilot control (a) but then loses signal
(b). It must then autonomously perform a return-to-home
function (c) and land safely (d).

by a motivating example of self-adaption in this context. The sim-
ulation provided in Aloft is described in Sec. 3. A description of
an exemplar is given in Sec. 4; we also describe how the user can
expand the exemplar’s controller and scenario setup to research
additional problems. In Sec. 5 we discuss existing work related to
autonomous drone adaptation.

2 SELF-ADAPTIVE DRONES IN MINES
Drones provide significant benefits tomining operations; self-adaptive
controllers may greatly assist drone operation in this domain. Aloft
aims to provide a software setup to allow the self-adaptive systems
community to quickly deploy bespoke solutions and/or investigate
the safe use of self-adaptive drones in mines.

2.1 Mine-Based Drone Applications
Drones have become a popular system of choice for remote au-
tonomous operation in mines due to their relative ease of operation
and ability to manoeuvre complex environments [13]. Drones are
particularly beneficial in parts of mines where it would present a
risk to human life if people were to enter. There are a few cases
where this can be applied: the surveying of newly excavated sec-
tions; participation in search-and-rescue in hazardous environ-
ments; and safe inspection of potentially unstable supports. The
relevance of this work extends to other environments and robot
types. Caves closely resemble mines and are of even greater risk
due to the lack of human-made support systems and unmonitored
effects of water erosion. Likewise, submersibles share a similarity
with aerial drones because they also operate in three dimensions,
and can be used to explore flooded mine sections or underwater
cave networks.

2.2 Motivating Example
In this example a manually-piloted drone is carrying out a volumet-
ric scan survey (Fig. 1a) to analyse excavation efficiency. During
the survey the drone loses the pilot control signal (Fig. 1b) in a
section of the mine that is unsafe for humans. To recover the drone
without human retrieval, the drone should safely and automatically
return to home (Fig. 1c). The surveying mission has allowed the
drone to generate a map of the mine, which it uses to compute a list
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Figure 2: High-level diagram of autonomous drone MAPE-K.

of waypoints to navigate home. Self-adaptation during navigation
can safely overcome the adverse conditions of the mine and ensure
the drone meets its safety requirements, such as maintaining a
safe separation from obstacles. There may also be mine operators
present that the drone must detect and safely avoid using its on-
board sensors. Finally, the drone should safely land once it reaches
the designated safe landing zone (Fig. 1d). In this instance the pilot
does not regain control during this return-to-home operation.

2.3 Autonomic Manager Description
In this work we use the MAPE-K approach to describing autonomic
management of an element [8]. Here the managed element is com-
prised of drone hardware and low-level software components that
interface with said hardware; see Fig. 2 for a high level interpre-
tation. The MAPE-K autonomic feedback loop consists of cycling
Monitor, Analyse, Plan and Execute phases as well as a Knowledge
base utilised across them. Here we explain how a self-adaptive
drone system relates to these phases.

Monitor: Here the autonomic management system gathers data
to guide self-adaptive behaviour. We identify the following as
sources the self-adaptive system should monitor:
• Power consumption / battery levels
• Inertial measurement unit (IMU) data
• Camera / LiDAR data
• Temperature sensor data
• RC signal strength

Analyse: In this phase the autonomic management system takes
the incoming data and at times from the knowledge base to get
an understanding of the state. This stage provides the system the
critical information as to whether adaptation is required. Here are
some considerations for a self-adaptive drone:
• Determining whether there is a discrepancy between observed
data and the drone’s world model and updating this model
should this become too great

• Checking if the environment has changed since it was mapped;
these changes can affect the performance of the system and
components if the original plan is still being conducted

• Using computer vision to determine the presence of different
objects; these can pose as dangerous obstacles to the drone, as
well as in-danger to the drone’s operation

Plan: The Plan phase sees the autonomic management system
decide a course of action for the managed element and may need
to adapt even if the knowledge base is accurate. Below are some
considerations a drone must take into account:
• Ensuring that the system adheres to safety constraints by for-
mally verifying that a given course of action does not violate
the parameters described in these constraints

• Avoiding the influence of potential causal confounding, which
occurs when the Monitor and Plan phases are influenced by a
single common source, such as salt build-up in the rotors

• Deciding whether taking a new course of action to better un-
derstand the environment in order to reduce risk would be
more beneficial. This would be instead of continuing to pursue
the mission goal directly

Execute: The Execute phase is where the managed element acts
upon the output of the Plan phase. Self-adaptation is still required
as the element may need or prefer to react to situations without
re-planning. Here are some drone-related examples:
• If there has been a substantial change to the map — described
in the Analyse phase — the drone may have to adapt the plan
to safely navigate around obstacles while still being able to
reach its goal

• In the presence of moving objects (e.g. humans, vehicles, hang-
ing wires), adapting the drone’s path ensures sufficient clear-
ance by predicting collision-free trajectories

• Should the Analyse phase determine the world model has
significantly changed (e.g. wind, dust), a new generated model
would be required to correct the drone’s course

Knowledge: The knowledge base contains information relevant
to the scene and interactions within it. This information could
include:
• The current state of the world; including information no di-
rectly observed via the monitoring stage

• A description of the drone mission or a reward metric
• A dynamically updated map of the environment
• A transition model representing the interactions between the
drone and its environment

• Generated explanations to determine the reason a given out-
come or action was observed

3 ALOFT SETUP
Aloft is packaged with a full simulation setup. This consists of
the ROS and Gazebo setup, along with the mock mine models,
and modified PX4-vision drone. A qcow2 virtual machine image
containing the artifact can be found here: https://github.com/uoy-
research/ALOFT.

3.1 Mock Mine
Two mock mine environments are provided with Aloft, see Fig. 3.
Each mock mine environment was first constructed physically and
then scanned using a terrestrial laser scanner to generate an accu-
rate 3D point cloud. These point clouds were used to construct the
simulated mines. The full process can be found on the GitHub repo.

Aloft provides two mine environments to allow users to im-
plement a drone controller and train/validate it in one mock mine

https://github.com/uoy-research/ALOFT
https://github.com/uoy-research/ALOFT
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(a)

(b) (c)

Figure 3: (a) A physical mine constructed. A laser scanner
was used to collect the point cloud. Two slightly different
physical mock mines were created and scanned (b,c). The
physical mine in (a) was to make the simulated mine in (c).

environment, and then test their controller in an unseen mock mine
environment. Aloft also contains the collected point cloud from
one of the mock mines as this can be used prior to deployment —
for example for an initial global navigation plan [5].

3.2 PX4-Autopilot
The target hardware system for the simulation is a PX4 Vision V1.5
quadcopter drone [9]. This drone runs the popular PX4-Autopilot
flight controller stack software. PX4-Autopilot is open source with a
large development community. It uses the MAVLink messaging pro-
tocol to send commands from the flight control unit to the drone’s
motor controllers. It also transmits system status updates to Ground
Control System (GCS) software used to remotely monitor, config-
ure and command the drone. PX4-Autopilot provides the ability
for external flight control via software executed on an onboard
companion computer. The companion computer interfaces with
the flight control unit via MAVLink and the navigation framework
implemented via ROS.

ROS is a widely used robotics operating framework [15]. Due to
being a middleware software layer, the same ROS software can be
run on both real-world robot hardware and simulated robots. ROS
provides a development environment where the system’s function-
ality can be adapted and extended rapidly.

Simulation is an easy, fast and importantly, safe, way to test new
adaptive drone controller behaviours before attempting to fly in the
real world. PX4-Autopilot seamlessly integrates with many simula-
tion tools including Gazebo, a popular 3D simulation environment
which integrates easily with ROS. For PX4-Autopilot, Gazebo is
particularly suited to testing object-avoidance and computer vision
applications [19] due to Gazebo’s flexibility of environment set up.

PX4 automatically collects detailed system state and sensor data.
To log additional data from ROS-based software, users can use

rosbag, which is a tool for recording data being published in ROS.

3.3 Adapting to Dynamic Scenarios
Mine environments are dynamic and often contain wind currents
and airborne dust particles. Wind conditions may change quickly
and without notice due to activity at air dams, while the exact
interactions of the dust with motors and sensors is uncertain and
difficult to model in advance. Thus, the drone must adapt online
while it operates. This could include, for example, updating its
model and understanding of the world, or taking cautious actions
if it is known that there are safety critical concerns.

Other challenges include the presence of dynamic obstacles. Dur-
ing the outbound surveying portion of the flight mission, obstacles
might have moved. Thus, when returning to home, the drone’s map
will be outdated and will require adaptive planning.

Changesmay happen to the drone itself, including sensor failures.
For example, the camera might become dirty due to the airborne
dust or the magnetometer may suffer from magnetic interference.

Aloft allows the user to modify various aspects to investigate self-
adaptive drone controllers in mine operations. We have categorised
these aspects as:
• Physical concerns
– Environmental: Intrinsic issues to the mine setting
– System: Components on the drone system that are challeng-
ing due to failure and degredation

• Time related concerns
– Pre-flight: Issues that could occur prior to the drone’s mis-
sion

– Runtime: Potential ongoing problems during the mission
It should be noted that the physical and time related concerns

are not mutually exclusive. Examples can be found in Table 1.

4 SIGNAL LOSS EXEMPLAR
Aloft contains a setup of the motivating example, described in Fig. 1,
where the drone initially performs an operation and loses signal.
This now requires the drone to return home autonomously.

4.1 PX4-Vision
The PX4 Vision is equipped with a Structure Core depth camera
and Up Core companion computer. A key requirement is to ensure
the drone does not collide with any obstacles. We therefore added
a bump sensor to the PX4-Vision model. This sensor is not and
should not be available to the drone. It is for analysis purposes only.

4.2 Self-Adaptive Architecture
The self-adaptive controller employs a two-layered architecture
consisting of a managed system and a managing system. The man-
aged system is concerned with the systems main duties, while the
managing system contains the adaptive tasks. Themanaging system
utilises a MAPE-K feedback loop, see Fig. 4.

4.2.1 Managed System. The managed system handles the main
function which is a hybrid between the PX4 flight stack and ROS
software packages. This hybridisation is achieved using MAVROS, a
ROS package that can translate between traditional software using
ROS messages and MAVLINK messages. The managed system re-
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Physical concerns Time related concerns
Environmental System Preflight Runtime
• Pre-built mine environments for
immediate use

• Hanging obstacles which may
swing requiring adaptation of
flight plan

• Scalar field describing dust den-
sity which affects drone motors &
sensors, requiring adaptation of
drone-environment causal model

• Inconsistent lighting conditions
require that the system prioritise
different sensors / methodologies
depending their suitability for a
given circumstance

• Ready-to-use drone simulation
framework

• Fault simulation forcing drone to
adapt to be resistant to faults

• IMU magnetometer interference
simulation requires adaptation to
avoid using sensor measurements
that may hinder performance

• Battery modelling creating a
tradeoff between need to com-
plete mission fast and safely

• Ability to seamlessly switch be-
tween simulated and real drone
setups to check adaptability

• Randomplacement of obstacles re-
quiring adaptable planning

• Verification to approximate a
Pareto front between mission suc-
cess metrics

• Ability to set epistemic uncer-
tainty of information to help as-
certain the ability of the system
to decide against exploration for
vs exploitation of knowledge

• Option to choose between same
parameters for repeatability dur-
ing development vs random pa-
rameters for adaptability testing

• Dynamic wind conditions requir-
ing fast adaptation to avoid colli-
sion

• Utilising causal modelling to offer
a system that is robust to the pres-
ence of confounders

• Collision detection emphasising
the avoidance of collisions and
appropriate corrective measures
taken in the event of a collision

• Generation of explanations to
help in understanding adaptation
failure cases

Table 1: The areas relating to self-adaption that this artifact aims to tackle.

MANAGING SYSTEM

MANAGED SYSTEM

ENVIRONMENT

EKF2

Motion command
Sensors

(3D-camera/IMU)

Velocity tuning Avoidance

EXECUTE

PLAN

MONITOR

KB

ANALYSE

Adapt max
velocity

Set new goal
location

Local position

Camera image

Waypoint reached

Person detection

Next waypoint

Adaptive velocity

Waypoints

Figure 4: The architecture for the return-to-home behaviour.

ceives sensor information, Sensors, from the environment. Primarily
this is 3D-camera data, which consists of a RGB image and 3D point
data, plus IMU readings. The PX4 uses the IMU readings to localise
using the Extended Kalman Filter, EKF2. Another deployed package
is PX4-Avoidance [21] which when given a navigation goal will
attempt to traverse to while avoiding obstacles. PX4-Avoidance
uses the vector field histogram (VFH*) [22], Avoidance, which uses
3D sensor readings and localisation information to produce inter-
mediate waypoints. MAVROS allows the system to send positions
to the PX4 and it will fly quickly to the goal (Motion command in
Fig. 4). To have control over the maximum velocity Velocity tuning
ensures that the next step is below a given threshold.

4.2.2 Managing System. The managing system monitors the RGB
images provided by Sensors and the local position from EKF2. The
system has a sequence of waypoints it must achieve to return home,
and continues to analyse the Local position in Waypoint reached.
This informs Next waypoint whether we need to update the current
waypoint and if so this is executed in Set new goal location, which is
then fed into Avoidance. Similarly we detect if humans are present
with a pretrained YOLO module. YOLO [2] (you only look once)

is a deep learning network trained to detect objects in an image.
The network has been pretrained with the COCO dataset which
contains humans as a class. This state estimate of human presence
is input into Adaptive velocity which determines if the drone needs
to change the max speed which is executed by Adapt max velocity.
Finally this is fed into Velocity tuning to inform the drone’s actions.
The knowledge base consists of the list of waypoints which is used
for determining if the PX4-Vision has reached a waypoint, and
determining the next waypoint.

4.3 Presence of Mine Operator
A mine operator may be present during the PX4-Vision’s return-
to-home mission. There is a script included in the Aloft which will
randomly place a human in the mine.

In the scenario the drone’s battery is constantly depleting. There-
fore it is desirable for the drone to return home as soon as possible
to avoid low battery problems. Hence this exemplar is concerned
with time to complete the mission. A safety requirement is for
the PX4-Vision to not have collisions, particularly with any mine
operators. Hence the PX4-Vision will need to adapt its maximum
velocity if it believes there is a human in the vicinity. Essentially
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Times (s)
Human presence Detect Human Return Home

Yes 13.6 57.35
No - 35.1

Table 2: Recorded times for the drone’s return homemission.

the PX4-Vision will reduce its maximum velocity if it detects one
or more humans with its camera and computer vision.

Due to the signal loss, the PX4-Vision can only interact with the
environment and mine operators physically. This is problematic
as the PX4-Vision may lose visual on the mine operator due to
a variety reasons, including noisy camera images and the mine
operator moving out of sight. The PX4-Vision’s self-adaptive system
therefore assumes that once detected the mine operator is now
constantly in the environment and will maintain the lower adapted
maximum velocity.

Sample runs of when there was a mine operator present/absent
was conducted and reported in Table 2. As expected, the drone
takes longer to return home when it has detected a mine operator.
A video of a sample run is available on the GitHub repo.

4.4 Expanding the Exemplar
Aloft ’s exemplar can be expanded to investigate different topics
and themes in self-adaptive systems. As stated in Fig. 4.3 there is
a trade off between mission completion time and safety, to both
the PX4-Vision and any mine operators present. Navigation in PX4-
Vision can be modelled as a Markov Chain (discrete or continuous)
using the preset waypoints as states. Transitions can be derived
statistically from observing multiple runs. Overall this can enable
controller synthesis and generate a Pareto Front which trades-off
the multiple objectives, using EvoChecker [6] for example.

Similarly the PX4-Vision ROS network andGazebo environments
can be modified to investigate additional problems, such as those
mentioned in Table 1. Wind can be turned on, or lights can be
dimmed making it harder for the computer vision. The ROS mes-
sages themselves can be perturbed with noise, e.g., to model LiDAR
issues the PX4-Vision may experience in the mine.

Aloft can perform in-depth analysis. Automated multiple runs
are possible to statistically analyse the system as stated earlier. This
process can be useful for the user to compare their own developed
self-adaptive controller with the one included in Aloft as a potential
baseline. Furthermore, with two mock mines, the user can train
on one mock mine and then validate with the other, using the
provided controller for evaluation comparison purposes. Currently
the PX4-Avoidance typically moves the PX4-Vision so the camera
can best plot the next immediate waypoint. An example of a new
self-adaptive controller would be the PX4-Vision including the
functionality of maintaining visual if it detects a mine operator.
This can be perceived as a more cautious controller as the PX4-
Vision is ensuring that it has timely information regarding present
mine operators location and behaviour.

5 RELATEDWORK
Adaptation has been applied to robots generally [1] and more re-
cently to aerial drones [3, 4, 10, 12, 14] and underwater vehicles [18].
These systems frequently use the MAPE or MAPE-K (Monitor-
Analyze-Plan-Execute using shared Knowledge) self-adaptation

loop [8] to improve reliability. [3] presented MAPE-K runtime adap-
tive models for human-drone collaboration during emergency re-
sponse missions which allows the human and machine to work
together to achieve the mission goal. The authors note that they
still need to aggregate heterogeneous runtime models and align the
models’ design and implementation in an integrated environment.

Dragonfly [10] is a lightweight MAPE-K drone simulation with
runtime adaptation capable of simulating multiple drones in normal
and abnormal environmental conditions. It simulates using a 2D
gridworld where cells contain obstacles or conditions such as wind.
DARTsim [12] is a multi-drone simulator. It treats the team as a
single entity and adapts the drones’ paths and speeds to maximise
the mission’s success. It is a C++ library to provide adaptation that
can be linked into other simulations programmatically or using a
TCP socket. CICADA [14] MAPE-K framework incorporates the
PX4 Autopilot flight controller into Gazebo simulation engine. It
has a monitoring layer analysing the drone’s sensors and parameter
settings tomonitor the drone and its environment and an adaptation
layer to adapt the drone’s mission to the prevailing conditions, for
example stabilising the drone or landing immediately.

Aloft is a digital twin with a full physics engine and 3D simula-
tion of a real-world mine construction combined with the PX4 Au-
topilot flight controller. It allows the development of 3D computer
vision, collision avoidance and adaptive navigation algorithms to
allow the drone to return home safely and not require recovery. It
can verify and validate non-functional and functional requirements
including safety requirements of drones [10].

Similar to Aloft, SUAVE [18] is a ROS-based simulation that
adapts to environmental conditions and system failures. ROS-based
systems are node-based and can be easily altered or extended.
SUAVE simulates underwater vehicles inspecting pipelines and
provides different adaptation frameworks.

6 CONCLUSION
Drones can be of considerable use in mine operations, and self-
adaptive systems will play a pivotal role in the drones’ operation
success and safety. This seems to resonate with the industry’s focus
on adaptive technologies, hinting at a practical way to navigate
real-world complexities. This could potentially enhance efficiency,
safety, and data accuracy in mining operations. We presented Aloft,
an artifact which contains a multiple mine environments for drone
simulations. Aloft was designed to allow the self-adaptive systems
research community to investigate this specific problem domain
with a physics-based testbed. We provided a high level description
followed by an instantiation using a return-to-home exemplar. An
example run and corresponding results were recorded to illustrate
how one can perform experiments with Aloft. Guidance was given
to show how users can continue to research self-adaptive systems
for drones by expanding Aloft’s exemplar.
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